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		  Production editor:	Andy Marinkovich

		  Copy editor:	Christian Berk

		  Proofreader:	Keri Hales

		  Technical proofreader:	Karsten Strøbaek

		  Typesetter:	Dennis Dalinnik

		  Cover designer:	Leslie Hames

ISBN: 9781617297304

Printed in the United States of America

www.manning.com
mailto:orders@manning.com


iii

brief contents

Part 1  Getting started with streaming	 1

1	 Welcome to Grokking Streaming Systems	 3
2	 Hello, streaming systems!	 21
3	 Parallelization and data grouping	 53
4	 Stream graph	 81
5	 Delivery semantics 	 109
6	 Streaming systems review and a glimpse ahead	 141

Part 2 S tepping up	 153

7	 Windowed computations	 155
8	 Join operations	 185
9	 Backpressure	 211
10	 Stateful computation	 235
11	 Wrap-up: Advanced concepts in streaming systems	 259





v

contents

preface	 xv

acknowledgments	 xvii

about this book	 xix

about the authors	 xxiii

Part 1  Getting started with streaming  .  .  .  .  .  .  .  .  .  .  .  1

1	 Welcome to Grokking Streaming Systems	 3

What is stream processing?	 4
Streaming system examples	 5
Streaming systems and real time	 6
How a streaming system works	 7
Applications	 8
Backend services	 9
Inside a backend service	 10
Batch processing systems	 11
Inside a batch processing system	 12
Stream processing systems	 13
Inside a stream processing system	 14



vi	 contents

The advantages of multi-stage architecture	 15
The multi-stage architecture in batch and stream  

processing systems	 16
Compare the systems	 17
A model stream processing system	 18

2	 Hello, streaming systems!	 21

The chief needs a fancy tollbooth	 22
It started as HTTP requests, and it failed	 23
AJ and Miranda take time to reflect	 24
AJ ponders about streaming systems	 25
Comparing backend service and streaming	 26
How a streaming system could fit	 27
Queues: A foundational concept	 28
Data transfer via queues	 29
Our streaming framework (the start of it)	 30
The Streamwork framework overview	 31
Zooming in on the Streamwork engine	 32
Core streaming concepts	 33
More details of the concepts	 34
The streaming job execution flow	 35
Your first streaming job	 36
Executing the job	 42
Inspecting the job execution	 43
Look inside the engine	 44
Keep events moving	 48
The life of a data element	 49
Reviewing streaming concepts	 50

3	 Parallelization and data grouping	 53

The sensor is emitting more events	 54
Even in streaming, real time is hard	 55



	 contents� vii

New concepts: Parallelism is important	 56
New concepts: Data parallelism	 57
New concepts: Data execution independence	 58
New concepts: Task parallelism	 59
Data parallelism vs. task parallelism	 60
Parallelism and concurrency	 61
Parallelizing the job	 62
Parallelizing components	 63
Parallelizing sources	 64
Viewing job output	 65
Parallelizing operators	 66
Viewing job output	 67
Events and instances	 68
Event ordering	 69
Event grouping	 70
Shuffle grouping	 71
Shuffle grouping: Under the hood	 72
Fields grouping	 73
Fields grouping: Under the hood	 74
Event grouping execution	 75
Look inside the engine: Event dispatcher	 76
Applying fields grouping in your job	 77
Event ordering	 78
Comparing grouping behaviors	 79

4	 Stream graph	 81

A credit card fraud detection system	 82
More about the credit card fraud detection system	 83
The fraud detection business	 84
Streaming isn’t always a straight line	 85
Zoom into the system	 86
The fraud detection job in detail	 87
New concepts	 88



viii	 contents

Upstream and downstream components	 89
Stream fan-out and fan-in	 90
Graph, directed graph, and DAG	 91
DAG in stream processing systems	 92
All new concepts in one page	 93
Stream fan-out to the analyzers	 94
Look inside the engine	 95
There is a problem: Efficiency	 96
Stream fan-out with different streams 	 97
Look inside the engine again	 98
Communication between the components via channels	 99
Multiple channels	 100
Stream fan-in to the score aggregator	 101
Stream fan-in in the engine	 102
A brief introduction to another stream fan-in: Join	 103
Look at the whole system	 104
Graph and streaming jobs	 105
The example systems	 106

5	 Delivery semantics 	 109

The latency requirement of the fraud detection system	 110
Revisit the fraud detection job	 111
About accuracy	 112
Partial result	 113
A new streaming job to monitor system usage	 114
The new system usage job	 115
The requirements of the new system usage job	 116
New concepts: (The number of) times delivered and times processed	 117
New concept: Delivery semantics	 118
Choosing the right semantics	 119
At-most-once	 120
The fraud detection job	 121
At-least-once	 122



	 contents� ix

At-least-once with acknowledging	 123
Track events	 124
Handle event processing failures	 125
Track early out events	 126
Acknowledging code in components	 127
New concept: Checkpointing	 128
New concept: State	 129
Checkpointing in the system usage job for the at-least-once semantic	 130
Checkpointing and state manipulation functions	 131
State handling code in the transaction source component	 132
Exactly-once or effectively-once?	 133
Bonus concept: Idempotent operation	 134
Exactly-once, finally	 135
State handling code in the system usage analyzer component	 136
Comparing the delivery semantics again	 137
Up next . . .	 139

6	 Streaming systems review and a glimpse ahead	 141

Streaming system pieces	 142
Parallelization and event grouping	 143
DAGs and streaming jobs	 144
Delivery semantics (guarantees)	 145
Delivery semantics used in the credit card fraud detection system	 146
Which way to go from here	 147
Windowed computations	 148
Joining data in real time	 149
Backpressure	 150
Stateless and stateful computations	 151



x	 contents

Part 2 S tepping up . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  153

7	 Windowed computations	 155

Slicing up real-time data	 156
Breaking down the problem in detail	 157
Breaking down the problem in detail (continued)	 158
Two different contexts	 159
Windowing in the fraud detection job	 160
What exactly are windows?	 161
Looking closer into the window	 162
New concept: Windowing strategy	 163
Fixed windows	 164
Fixed windows in the windowed proximity analyzer	 165
Detecting fraud with a fixed time window	 166
Fixed windows: Time vs. count	 167
Sliding windows	 168
Sliding windows: Windowed proximity analyzer	 169
Detecting fraud with a sliding window	 170
Session windows	 171
Session windows (continued)	 172
Detecting fraud with session windows	 173
Summary of windowing strategies	 174
Slicing an event stream into data sets	 175
Windowing: Concept or implementation	 176
Another look	 177
Key–value store 101	 178
Implement the windowed proximity analyzer	 179
Event time and other times for events	 180
Windowing watermark	 181
Late events	 182



	 contents� xi

8	 Join operations	 185

Joining emission data on the fly	 186
The emissions job version 1	 187
The emission resolver	 188
Accuracy becomes an issue	 189
The enhanced emissions job	 190
Focusing on the join	 191
What is a join again?	 192
How the stream join works	 193
Stream join is a different kind of fan-in	 194
Vehicle events vs. temperature events	 195
Table: A materialized view of streaming	 196
Vehicle events are less efficient to be materialized	 197
Data integrity quickly became an issue 	 198
What’s the problem with this join operator?	 199
Inner join	 200
Outer join	 201
The inner join vs. outer join	 202
Different types of joins	 203
Outer joins in streaming systems	 204
A new issue: Weak connection	 205
Windowed joins	 206
Joining two tables instead of joining a stream and table	 207
Revisiting the materialized view	 208

9	 Backpressure	 211

Reliability is critical	 212
Review the system	 213
Streamlining streaming jobs	 214
New concepts: Capacity, utilization, and headroom	 215
More about utilization and headroom	 216
New concept: Backpressure	 217



xii	 contents

Measure capacity utilization	 218
Backpressure in the Streamwork engine	 219
Backpressure in the Streamwork engine: Propagation	 220
Our streaming job during a backpressure	 221
Backpressure in distributed systems	 222
New concept: Backpressure watermarks	 227
Another approach to handle lagging instances: Dropping events	 228
Why do we want to drop events?	 229
Backpressure could be a symptom when the underlying  

issue is permanent	 230
Stopping and resuming may lead to thrashing if the issue is permanent	 231
Handle thrashing	 232

10	 Stateful computation	 235

The migration of the streaming jobs	 236
Stateful components in the system usage job	 237
Revisit: State	 238
The states in different components	 239
State data vs. temporary data	 240
Stateful vs. stateless components: The code	 241
The stateful source and operator in the system usage job	 242
States and checkpoints	 243
Checkpoint creation: Timing is hard	 244
Event-based timing	 245
Creating checkpoints with checkpoint events	 246
A checkpoint event is handled by instance executors	 247
A checkpoint event flowing through a job	 248
Creating checkpoints with checkpoint events at the instance level	 249
Checkpoint event synchronization	 250
Checkpoint loading and backward compatibility	 251
Checkpoint storage	 252
Stateful vs. stateless components	 253
Manually managed instance states	 254
Lambda architecture	 255



	 contents� xiii

11	 Wrap-up: Advanced concepts in streaming systems	 259

Is this really the end?	 260
Windowed computations	 261
The major window types	 262
Joining data in real time	 263
SQL vs. stream joins	 264
Inner joins vs. outer joins	 265
Unexpected things can happen in streaming systems	 266
Backpressure: Slow down sources or upstream components	 267
Another approach to handle lagging instances: Dropping events	 268
Backpressure can be a symptom when the underlying issue is permanent	 269
Stateful components with checkpoints	 270
Event-based timing	 271
Stateful vs. stateless components	 272
You did it!	 273

Key concepts covered in this book	 275

index	 279





xv

preface

A mentor of mine once told me, at the beginning of my tech career, “If there’s one 
thing you can do to better your career, it’s contributing to open source.” I’d harbored 
that thought in the back of my mind throughout the years but never had a reason to do 
so. I thought, “What could I build that would be useful for others?” While working at 
1904labs I developed the ECO API for (at the time) Twitter Heron. It came from a client’s 
need—and from a little bit of selfishness; I really wanted to write and contribute that 
code. Eventually, Twitter donated Heron to the Apache Foundation, and I was invited to 
be a committer and part of the project management committee for Heron. The project 
interested me because it was the first open source project I did a deep dive on.

About a year later, from that initial commit on Heron’s main branch at about 4 p.m. 
on a Monday, I received an email with the subject line, “Apache Heron Book or Course 
Project” from Eleonor Gardner. After a quick read, I almost discarded the email, thinking 
it was a hoax. After all, why would anyone want me to write a book or teach a course 
project? Well, how wrong was I? After a discussion with Mike Stephens, Manning’s asso-
ciate publisher, and a few email exchanges with his assistant, Eleonor, I knew I needed 
some help. I reached out to my friend and fellow Apache Heron committer, Ning Wang, 
praying that he’d be interested in writing a book with me. Luckily, he was—and that was 
the start to our long and rewarding journey.

Initially, the conversations about this book were for us to write specifically about 
Heron. But Ning had some ideas to make the book better. After all, technologies change 
quickly and breaking changes in software can make a book obsolete quickly. We wanted 
to write about a topic that would live beyond individual streaming frameworks. We 
agreed to write a framework-agnostic book to teach the core concepts in a way that would 
allow readers to be able to jump into any streaming framework’s documentation and hit 
the ground running. 

So, we started writing the book using only words and then Ning and I were “gently” 
guided to try another approach. Again. And again. And again. And again. We learned 
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that diagrams make the content of a book much easier for readers to absorb. We created our 
first diagrams on paper with pen, and they were dismal:

Over the course of writing the book, our primitive-looking, scrawled creations evolved into 
the diagrams you now see in the book. Ning and I designed and developed all of these dia-
grams ourselves. We are extremely proud of what we have created, and we hope that you see 
value in this book. 

—Josh Fischer, November 2021
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about this book

Grokking Streaming Systems helps you unravel what streaming systems are, how they 
work, and whether they’re right for your business. Because they’re written to be tool- 
agnostic, you’ll be able to apply what you learn no matter which framework you choose. 
You’ll start with the key concepts and then work your way through increasingly complex 
examples, including tracking a real-time count of IoT sensor events and detecting fraud-
ulent credit card transactions in real time. You’ll even be able to easily experiment with 
your own streaming system by downloading the custom-built and super-simplified 
streaming framework designed for this book. By the time you’re done, you’ll be able to 
assess the capabilities of streaming frameworks and solve common challenges that arise 
when building streaming systems.

Who should read this book?
We have written this book for developers who have at least a couple of years of experience 
and who are looking to improve their knowledge and expertise. If you’ve been building web 
clients, APIs, batch jobs, etc., and are wondering what’s next, then this book is for you. 

How this book is organized: A road map
This book has a simple setup—just 11 chapters split into two parts; after you work your 
way through chapters 1 through 5 in order, you should be able to work through the 
remaining chapters in any order you choose. Here’s the rundown:

•	 Chapter 1 introduces readers to streaming systems from a 1,000-foot view and 
compares them against other typical computer systems. 
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•	 Chapter 2 delves into the fundamental ways in which streaming systems work.

•	 Chapter 3 discusses parallelization, data grouping, and how streaming jobs can scale.

•	 Chapter 4 covers stream graphs and how streaming jobs can be represented.

•	 Chapter 5 walks you through delivery semantics, such as how a developer can use a 
streaming system to reliably deliver events (or not).

•	 Chapter 6 reviews the core concepts and offers a preview of later chapters.

•	 Chapter 7 discusses windows—how these systems can help you slice up endless 
streams of data.

•	 Chapter 8 describes streaming joins, or bringing data together in real time.

•	 Chapter 9 tells you all about how streaming systems handle failures.

•	 Chapter 10 lets you know how streaming systems deal with stateful operations  
in real time.

•	 Chapter 11 wraps up the later chapters and offers our advice on where to go next  
with your interest in streaming systems.

About the code
We’ve provided code for chapters 2, 3, 4, 5, 7, and 8. You can download it from https://
github.com/nwangtw/GrokkingStreamingSystems. In addition, the source code can be down-
loaded free of charge from the Manning website at https://www.manning.com/books/grokking- 
streaming-systems. To run the examples, you will need Java 11, Apache Maven 3.8.1, and the 
command-line tool Netcat, or NMap. 

This book contains many examples of source code, both in numbered listings and in line 
with normal text. In both cases, source code is formatted in a fixed-width font to sep-
arate it from ordinary text. Sometimes code is also shown in bold to indicate that it has 
changed from previous steps in the chapter, such as when a new feature adds to an existing 
line of code. In many cases, the original source code has been reformatted; we’ve added line 
breaks and reworked indentation to accommodate the available page space in the book. In 
rare cases, even this was not enough, and listings include line-continuation markers (➥). 
Additionally, comments in the source code have often been removed from the listings when 
the code is described in the text. Code annotations accompany many of the listings, highlight-
ing important concepts.

https://github.com/nwangtw/GrokkingStreamingSystems
https://github.com/nwangtw/GrokkingStreamingSystems
https://www.manning.com/books/grokking-streaming-systems
https://www.manning.com/books/grokking-streaming-systems
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liveBook discussion forum
Purchase of Grokking Streaming Systems includes free access to liveBook, Manning’s online 
reading platform. Using liveBook’s exclusive discussion features, you can attach comments to 
the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, 
ask and answer technical questions, and receive help from the author and other users. To access 
the forum, go to https://livebook.manning.com/book/grokking-streaming-systems/discussion/. 
You can also learn more about Manning’s forums and the rules of conduct at https://livebook.
manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dialogue 
between individual readers and between readers and the author can take place. It is not a 
commitment to any specific amount of participation on the part of the authors, whose con-
tribution to the forum remains voluntary (and unpaid). We suggest you try asking them 
some challenging questions lest their interest stray! The forum and the archives of previous 
discussions will be accessible from the publisher’s website as long as the book is in print.

https://livebook.manning.com/book/grokking-streaming-systems/discussion/
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
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Part 1 of this book drops you head-first into the world of streaming sys-
tems. It can help you answer questions, such as “Why do streaming systems 
work this way?” and “Why would I ever use them?” Chapter 1 describes the 
high-level differences in what sets streaming systems apart from others. 
Chapter 2 is the hello world of streaming, where we walk you through the 
fundamentals of how these streaming systems work. Chapter 3 describes 
how to scale out these systems, and chapter 4 shows you how data can tra-
verse streaming jobs. Chapter 5 spells out how these systems can help you 
reliably deliver data in real time, and chapter 6 recaps the important points 
from each chapter. By the end of part 1, you will have the knowledge neces-
sary to jump into any streaming framework of your choice and hit the 
ground running.

Part 1  
Getting started with 

streaming
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In this chapter, we will try to answer a few basic questions about streaming 
systems, starting with “what is stream processing?” and “what are these 
stream processing systems, or streaming systems, used for?” The objective 
is to cover some basic ideas that will be discussed in later chapters.

In this chapter

•	 an introduction to stream processing

•	 differentiating between stream processing systems 

and other systems

1Welcome to  
Grokking Streaming Systems

If it weren’t for the rocks in its bed, the stream 

would have no song.

—Carl Perkins 
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What is stream processing?
Stream processing has been one of the most popular technologies in the recent years in 
the big data domain. Streaming systems are the computer systems that process continu-
ous event streams.

A key characteristic of stream processing is that the events are processed as soon as (or 
almost as soon as) they are available. This is to minimize the latency between the origi-
nal event’s entrance into the streaming system and the end result from processing the 
event. In most cases, the latency varies from a few milliseconds to seconds, which can be 
considered real-time or near real-time; hence, stream processing is also called real-time 
processing. From the usage point of view, stream processing is typically used for analyz-
ing different types of events. As a result, the terms real-time analytics, streaming analytics, 
and event processing might also be used to reference stream processing systems in differ-
ent scenarios. In this book, stream processing is the chosen term, which is well-adopted 
by the industry.

Examples of events:
Here are a few examples of events:

•	 The mouse clicks on a computer

•	 The taps and swipes on a cell phone

•	 The trains arriving at and leaving a station

•	 The messages and emails sent out by a person

•	 The temperatures collected by sensors in a laboratory

•	 The interactions on a website (page views, user logins, clicks, and so on) from all users

•	 The logs generated by computer servers in a data center

•	 The transactions of all accounts in a bank

Note  that, typically, there isn’t a predetermined ending time for the events processed in 
streaming systems. You can think of them as never-ending; hence, the events are often 
considered continuous and unbounded. Events are everywhere—literally. We are living in 
the information age. A lot of data is generated, collected, and processed all the time.

Think about it

Stream processing systems are the 
computer systems designed to 
process continuous event streams.
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Streaming system examples
Let’s look at two examples:

•	 The first example is a temperature-monitoring system in a laboratory. Many 
sensors are installed in different locations to collect temperature data 
every second. The streaming system is built to process the collected 
data and display the real-time information in a dashboard. It can also 
trigger alerts when any anomaly is detected. Laboratory administrators 
use the system to monitor all the rooms and make sure the 
temperature is in the right range.

•	 The second example is the monitoring and analyzing systems that process user 
interactions, such as page views, user logins, or button clicks on a website. When 
you visit a website, it is common that a lot of events are logged. 
These raw events often have many fields, so it is not efficient to 
digest directly. Also, some of the fields are not human-readable 
and need to be translated before consuming. Streaming systems 
are very helpful for converting the raw events data into more 
useful information, such as number of requests, active users, 
views on each page, and suspicious user behaviors, in this context.

In the examples above, a huge number of events can be processed by streaming systems 
to dig out useful information hidden in the data in real time. Streaming systems are very 
useful because there is a lot of useful information hidden in these events, and real time 
is critical in many cases.



6	 Chapter 1  I  Welcome to  Grokking Streaming Systems

Streaming systems and real time
A streaming system refers to a system that extracts useful information from continuous 
streams of events. More specifically, as we mentioned at the beginning of this section, we 
would like streaming systems to process the events and generate results as soon as possi-
ble after the events are collected. This is desirable because it allows the results to be 
available with minimal delays and the proper reactions to be performed in time. Their 
real-time nature makes streaming systems very useful in many scenarios, such as the 
laboratory and the website, where low-latency results are desired.

In the laboratory, the monitoring system can trigger alerts, start backup devices auto-
matically, and notify the administrators, when necessary. If failed equipment is not 
repaired or replaced in time and the temperature is not under control, the temperature- 
sensitive devices and samples could be affected or damaged. Some ongoing experiments 
may be interrupted as well. For a website, in addition to monitoring issues, charts and 
dashboards generated by streaming systems could be helpful for developers to under-
stand how users engage with the website so they can improve their products accordingly.

Systems pushing data 
into the streaming 
system

Systems consuming 
data from the 
streaming system

Streaming 
System
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How a streaming system works
After seeing some examples of events and streaming systems, you should now have some 
ideas about what streaming systems are. The next few pages will show you how stream-
ing systems work from a very high level by comparing them with other types of 
systems.

Comparison of four typical computer systems
You’ll find that stream processing systems and other computer systems have many things 
in common. After all, a streaming system is still a computer system. Below are a few 
typical systems we chose to compare:

•	 Applications

•	 Backend services

•	 Batch processing services

•	 Stream processing services
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Applications
An application is a computer program that users interact with directly. Programs 
installed on your computer and apps installed on your smartphone are applications. For 
example, the calculator, text editor, music and video players, messenger, web browser, 
and games installed on a computer or smartphone are all applications. They are every-
where! Users interact with computers via all kinds of applications.

Users use applications to perform tasks. You can create a note or a book in a text edi-
tor and save it in a file. If you have a video file, you can use a video player application to 
open and play it. You can use a web browser to search for information, watch videos, and 
shop on the internet.

Inside an application
Applications will vary a lot. A command-line tool, a text editor, a calculator, a photo 
processor, a browser, and a video game look and feel significantly different from each 
other. Have you ever thought of them to be the same type of software? Internally, they 
are even more different. A simple calculator can be implemented with a few lines of code, 
while a web browser or a game has millions of lines in its code base.

Despite all the differences, the basic process in most applications are similar: there is 
a starting point (when the application is opened), an ending point (when the application 
is closed), and a loop (the main loop) of the following three steps:

1.	 Get user input

2.	 Execute logic

3.	 Show results

1. Get user input.

2. Execute logic.

3. Show results.

Start

End
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Backend services
A backend service is a computer program that runs behind the scenes. Different from an 
application, a backend service doesn’t interact with users directly. Instead, it responds to 
requests and performs specific tasks accordingly. A service is normally a long-running 
process, and it waits for incoming requests all the time.

Let’s look at a simple web service as an example. When a request is received, the 
program parses the requests, performs tasks accordingly, and, finally, responds. After 
a request is handled, the program waits for the next request again. The web service is 
often not working alone. It works with other services together to serve the requests. 
Services can handle requests from each other, and each one is responsible for a specific 
task. The figure below shows a web service and a storage service working together to 
serve a page request.

1. Browser: show 
me page XYZ.

2. Web Service: 
give me objects X, 
Y and Z.

3. Storage: Here 
they are.

4. Web Service:
Here is the page.

Web  
Service

Browser
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Inside a backend service
Inside a backend service, there is a main loop, too, but it works differently, because the 
requests processed by a service are quite different from the user inputs in an application. 
Because an application is normally used by a single user, checking the user input at the 
beginning of the main loop is normally sufficient, but in a backend service, many 
requests can arrive at the same time, and the requests can arrive at any moment. To han-
dle the requests promptly, multi-threading is an important technique for this use case. A 
thread is a subtask executed within a process; multiple threads can exist within the con-
text of one process. Multiple threads share the process’s resources like memory, and they 
can be executed concurrently.

A typical service looks like the previous diagram. When a request is received, the request 
handler creates a new thread to perform the real logic, and it returns immediately with-
out waiting for the results. The time-consuming calculation (the real logic) is then per-
formed concurrently on its own thread. This way, the main loop runs very quickly, so the 
new incoming requests can be accepted as soon as possible.

start

wait for 
request

create 
request handler 

thread

handle request

3. Go back and wait for the next request.

1. A new request is received.

2. Create a new 
thread to handle 
the request.
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Batch processing systems
Both applications and backend services are designed to serve clients (human users or 
remote requests) as soon as possible. Batch processing systems are different. They are not 
designed to respond to any input. Instead, they are designed to execute tasks at scheduled 
times or when resources permit.

You can see real-life examples of batch processing systems fairly often. For example, 
in a post office, mail is collected, sorted, transported, and delivered at scheduled times 
because it is more efficient this way. It would be hard to imagine a system in which some-
one accepts your handwritten letter, runs out the door, and tries to deliver the letter to 
the recipient immediately. Well, it could work, but it would be super inefficient, and you 
would need a really good excuse to justify the effort.

Nowadays, huge amounts of data, such as articles, emails, user interactions, and the 
data collected from services and devices, are generated every second. It is critical and 
challenging to process the data and find useful information. Batch processing systems 
are designed for this use case.

Look!

Batch processing systems 
are designed to process huge 
amounts of data efficiently.
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Inside a batch processing system
In a typical batch processing system, the whole process is broken into multiple steps, or 
stages. The stages are connected by storages that store intermediate data.

In our example, the incoming data is processed in batches (an example could be user 
interaction data for each hour on a website). When new data is available (the whole batch 
is received and ready to be processed), stage 1 is started to load the data and execute its 
logic. The results are persisted in the intermediate storage for the following stages to pick 
up and process. After all the data in the batch is processed by the stage, the stage is shut 
down and the next stage (stage 2 in the diagram above) is started to execute on the inter-
mediate results generated by stage 1. The processing is completed after the batch is pro-
cessed by all the stages.

A batch processing system

Results

Incoming data

Process
Stage 1

Process
Stage 2

Process
Stage 3

Process
Stage 4

storage

storage

storage

storage

storage
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Stream processing systems
The batch processing architecture is a very powerful tool in the big data world. However, 
batch processing systems have one major limitation: latency.

Batch processing systems require data to be collected and stored as batches at regular 
intervals, such as hourly or daily before starting. Any events collected in a particular 
time window need to wait until the end of the window to be processed. This could be 
unacceptable in some cases, such as for the monitoring system in a laboratory, where 
alerts will be triggered in the following hour with a batch processing system. In these 
cases, it could be more desirable for data to be processed immediately after it is received—
in other words, to get the results in real time. Stream processing systems are designed for 
these more real-time use cases. In a stream processing system, data events are processed 
as soon as possible once they are received.

We have used the post office as our real-world example of a batch processing system. 
In this system, mail is collected, transported, and delivered a few times a day at sched-
uled times. A real-world example of a stream processing system could be an assembly 
line in a factory. The assembly line has multiple steps, too, and it keeps running to accept 
new parts. In each step, an operation is applied to one product after another. At the end 
of the assembly line, the final products come out one by one. 

Look!

Stream processing systems 
are designed to process huge 
amounts of data with low 
latency.
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Inside a stream processing system
A typical stream processing system architecture looks similar to the batch processing sys-
tems. The whole process is broken into multiple steps called components, and data keeps 
flowing from component to component until the processing steps have completed.

The major difference between stream processing systems and batch processing systems 
is that the components are long running processes. They keep running and accepting 
new data to process. Each event will be processed immediately by the next component 
after it is processed by the previous component. Therefore, the final results will be gen-
erated shortly after an event is received by the streaming system.

storage

storage

storage

Executor Executor

Executor

Executor

A stream 
processing system

Steps are long running 
processes.

Incoming 
data

Results
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The advantages of multi-stage architecture
Both batch and stream processing systems have a multi-stage architecture. This architec-
ture has a few advantages that make it suitable for data processing use cases:

•	 More flexibleMore flexible—Developers can add or take away stages to their jobs as they see fit.

•	 More scalableMore scalable—Stages are connected, but each of them is independent from each 
other. If one stage becomes the bottleneck of the whole process with the existing 
instances (instances 1 through 3 in the diagram below), it is easy to bring up 
more instances (instances 4 and 5) to increase the throughput.

•	 More maintainableMore maintainable—Complicated processes can be composed with simple 
operations, which are easier to implement and maintain.

stage

incoming

storage

incoming

storage

instance 
1

stage

instance 
4

instance 
3

instance 
2

instance 
5

stage

outgoing

storage

stage

New instances can be 

added easily if a stage 

becomes the bottleneck.
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The multi-stage architecture in batch  
and stream processing systems
Batch processing systems
In batch processing systems, stages run independently of each other, and instances in the 
same stage also run independently of each other. This means they are not all running at 
the same time. All the instances in the system can be executed one by one or batch by 
batch, as long as the execution order is correct. As a result, you can build a batch process-
ing system to process a huge (we really mean it) amount of data with very limited 
resources (though it will take more time to process with fewer resources). To compensate 
for the overhead of persistence of intermediate data, normally it is more efficient to pro-
cess events in bigger batches. For example, hourly or daily are common batching win-
dows. The events happening at the beginning of a window have to wait for the whole 
hour or day to be closed before being processed. This is the cause of the high latency.

One major advantage is that failure handling is easy with batch processing systems. In 
case an issue happens, such as a computer crashing or failing to read or write data, the 
failing step can simply be rescheduled on another machine and rerun.

Stream processing systems
On the streaming side of things, all the steps are long running processes. Events are 
transferred from one to another continuously. As a result, we don’t have the ability to 
stop stages when they are not working properly anymore, and failure handling becomes 
more complicated. However, events are being processed as soon as possible, so we can get 
real-time results.
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Compare the systems
Let’s compare the systems we have introduced in this section to have a better idea how 
different types of computer systems work.

Application Backend service Batch processing 
system

Stream processing 
system

Process user inputs Process requests Process data Process data

Interact with users 
directly

Interact with  
clients and other 
services directly. 
Interact with users 
indirectly.

Apply operations 
on data. The results 
can be consumed 
by users directly or 
indirectly.

Apply operations on 
data. The results 
can be consumed 
by users directly or 
indirectly.

Applications are 
started and stopped 
by users.

Instances of a ser-
vice are long run-
ning processes.

Instances in the 
system are sched-
uled to start and 
stop.

Instances in the sys-
tem are long run-
ning processes.

Single main loop Single main loop 
with threads

Multi-stage process Multi-stage process

One thing to keep in mind is that these 
examples are just typical architectures for 

typical use cases. Real-world systems could be 
architected in many different ways to fulfill their 

own requirements.
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A model stream processing system
After looking at a few different systems, let’s focus on stream processing systems. From 
the previous section, you have learned that a streaming system consists of multiple long 
running component processes.

The answer to the question depends on the systems you want to build. What do you want 
to do? How big is the traffic? How many resources do you have? How will you manage 
these resources? How will you recover from a failure? How will you make sure the results 
are correct after the recovery? There are many questions to consider when building a 
stream processing system. So, the answer seems to be a yes?

Well, yes, streaming systems can be fairly complicated, but they are not that hard to 
build either. In the next chapters, we are going to learn how to build streaming systems 
and how they work internally. Are you ready?

Executor

Executor Executor

Executor

Executors here and there—this 
system can’t be hard to build, right?
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Summary
In this chapter, we learned that stream processing is a data processing technology that 
processes continuous events to get real-time results. We also studied and compared typ-
ical architectures of four different types of computer systems to understand how stream 
processing systems differ from the others:

•	 Applications

•	 Backend services

•	 Batch processing systems

•	 Stream processing systems

Exercise
1.	 Can you think of more examples of applications, services, batch processing 

systems, and stream processing systems?
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In this chapter

•	 learning what events are in streaming systems

•	 understanding the different streaming components 

•	 assembling a job from streaming components

•	 running your code

2Hello, 
streaming systems!

First, solve the problem. Then, write the code.

—John Johnson
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The chief needs a fancy tollbooth

Vehicles drive onto the bridge

The bridge

The sensor detects and emits out vehicle 
types as events. AJ’s system picks up the 
events and keeps track of the count of 
each vehicle type that has crossed the 
bridge.

SidThe Chief

truck

1 billion 
served

Sign is updated in real time 
after results are processed.

I’d like to automate a tollbooth  
business that will make  

beaucoup bucks!  It needs to be state  
of the art and handle the fastest  

traffic around.

Thanks for the clear  
requirements.  What do we mean  

by “fast?”

I’m thinking rush hour traffic.

Thanks again for the clarity.  We first need to 
consider the potential problems of dealing with 

never-ending lanes of traffic.

I’d also like to show an exact  
count of how many vehicles we’ve  

processed to the drivers.  It’s purely  
an ego thing to show how fantastic  

this bridge is.
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It started as HTTP requests, and it failed

Traffic increased for the holi-
days. The system took on a 
load that it couldn’t handle. 
The latency of the requests 
caused the system to fall 
behind, leading to inaccurate 
up-to-date results for the 
chief and a headache for AJ 
and Miranda.

request
a sensor counting service

response

The latency in HTTP requests 
caused the system to fall 
behind the incoming events.

AJ, Miranda, and Sid, as usual, started out with the tried and true backend service 
design that used HTTP requests to transfer data. But it failed. 

As technology has quickly advanced 
over the years, most of the manual 
parts of tollbooths have been replaced 
with IoT (Internet of Things) devices. 
When a vehicle enters the bridge, the 
system is notified of the vehicle type 
by the IoT sensor. The first version of 
the system is to count the total num-
ber of vehicles by type (cars, vans, 
trucks, and so on) that have crossed 
the bridge. The chief would like the 
result to be updated in real time, so 
every time a new vehicle passes, the 
corresponding count should be 
updated immediately. 

I wonder if we would 
encounter any issues with a 

web service trying to solve this 
problem?....

The first solution  
I’m thinking of is  

using a web service.

M
iranda

Because of this lag, our count is not 
up to date or correct.

The system can’t keep up with 
the number of vehicles crossing the 

bridge.  

Aj
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AJ and Miranda take time to reflect

truck

1 billion 
served

Sign is updated in real time 
after results are processed.

some 
remote 
system

1. Data enters 
the system 

from the sensor

2. The remote 
system counts the 
total number of 

vehicles.

3. The current total 
count is pulled out 
from the remote 

system to be 
displayed on the 

billboard.

I feel this request/response model isn’t right.  
It’s not necessary to wait for a response when 
counting the cars.  Look at the natural flow of 

data in the system.

Since there is no need for the total 
count response at the sensor, I wonder 

how we could more naturally make data flow 
through this system? Fast and accurate 

reports are vital.
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AJ ponders about streaming systems

Without getting too far into the details of networking and packet exchanges, there is a 
difference in how streaming systems communicate over systems that use the http back-
end service architecture. The main difference in the backend service design is that a cli-
ent will send a request, wait for the service to do some calculations, then get a response. 
In streaming systems, a client will send a request and not wait for the request to be pro-
cessed before sending another. Without the need to wait for data to be processed, sys-
tems can react much more quickly.

Still a little unclear? We will get you more details step by step as we continue in this 
chapter.

If we remove the latency with the 
request/response model, I bet we can handle 

the traffic and keep an accurate real-time 
count of vehicles.

I’ve heard of streaming.  What’s 
the major difference and benefit of 

using them?

One benefit is that streaming 
systems will handle this type of data 

flow better than the request/response 
model.



26	 Chapter 2  I  Hello, streaming systems!

Comparing backend service and streaming
Backend service: A synchronous model

Streaming: An asynchronous model

With streaming, you can just keep 

sending data. There is no need to 

wait for a remote system to process 

your request and respond.

waiting...

send request

receive response

a system
still processing

a system
starts processing

a system
finishes 

processing

send request

streaming 
system

The processing results are stored elsewhere.
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How a streaming system could fit
At a high level, AJ gets rid of the request/response model and decouples the process into 
two steps. The diagram below shows how a streaming system would fit in the scenario of 
counting vehicles that cross the bridge. We will cover the details in the rest of the chapter.

vehicle Counter

IoT 
Sensor Reader

The sensor is used to emit out 
vehicle types to be processed 

by AJ’s system.

AJ has a streaming job to 
keep a running count of 
each vehicle type. The 

diagram shows at a high 
level the steps of how the 

job would process each 
event.

Vehicle types generated by 
the sensor are pulled into the 

streaming job by the IoT 
sensor reader.

The vehicle counter receives 
events from the IoT sensor 

reader and processes them.

Van
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Queues: A foundational concept
Before moving forward, let’s take a particular look at a data structure: a queue. It is heav-
ily used in all streaming systems.

Traditional distributed systems typically communicate via the request/response model—
also known as the synchronous model. With streaming systems this is not the case, as 
the request/response model introduces unneeded latency when working with real-time 
data (technically speaking, near real-time could be more accurate, but streaming systems 
are often considered to be real-time systems). At a high level, distributed streaming sys-
tems keep a long running connection to components across the system to reduce data 
transfer time. This long running connection is for continually transferring data, which 
allows the streaming systems to react to events as they occur.

All distributed systems have some form of process running under the hood to transfer 
data for you. Among all the options, a queue is very useful to simplify the architecture 
for streaming use cases:

•	 Queues can help decouple modules in a system so that each part can run at its 
own pace without worrying about the dependencies and synchronization.

•	 Queues can help systems process events in order, since they are a FIFO (first in 
first out) data structure.

However, using queues to order continually transferring data is not all rainbows and 
sunshine. There can be many unexpected pitfalls when guaranteeing how data is pro-
cessed. We will cover this topic in chapter 5.

streaming 
system

“van” “car” “truck” “truck”

A queue connects and 
decouples two systems.

Queues are heavily used 
inside streaming systems too.
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Data transfer via queues
Take a minute or two to understand the diagram below. It shows two components and 
the intermediate queue of events between them, as well as the queues to the upstream 
and the downstream components. This transferring of data from one component to the 
next creates the concept of a stream, or continuously flowing data.

Process and thread

In computers, a process is the execution of a program, and a thread is an execution 
entity within a process. The major difference between them is that multiple 
threads in the same process share the same memory space, while processes have 
their own memory spaces. Both of them can be used to execute the data opera-
tion processes in the diagram that follows. Streaming systems might choose 
either one (or a combination of both) according to their requirements and con-
siderations. In this book, to avoid confusion, process is the chosen term (unless 
explicitly stated otherwise) to represent independent sequence of execution no 
matter which one is really in the implementation.

data
operation 
process

data
operation 
process

e1e2e3e4

Each one is an independent 
process that continuously 

takes elements to process.

This pattern of data transfer could go on and on.

Take the element from the 
incoming queue and perform 

a data operation on it.

Place the element on the 
outgoing queue for the next 

process in the job.
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Our streaming framework (the start of it)
During the initial planning phases for writing this book, several discussions took place 
on how to teach streaming concepts without tight coupling to a specific streaming tech-
nology for its examples. After all, it’s known that technology is advancing every day, and 
keeping the book up to date with ever-changing technology would have been extremely 
challenging. We feel that a lightweight framework, which we creatively named the 
Streamwork, will help introduce the basic concepts in streaming systems in a framework- 
agnostic way.

The Streamwork framework has an overly simplified engine that runs locally on your 
laptop. It can be used to build and run simple streaming jobs, which can hopefully be 
helpful for you to learn the concepts. It is limited in terms of functionality that is sup-
ported in widely used streaming frameworks, such as Apache Heron, Apache Storm, or 
Apache Flink, which stream data in real time across multiple physical machines, but it 
should be easier to understand.

One of the most interesting aspects (in our opinion) of working with computer sys-
tems is that there’s not a single correct way to solve all problems. In terms of functional-
ity, streaming frameworks, including our Streamwork framework, are similar to each 
other, as they share the common concepts, but internally, the implementations could be 
very different because of considerations and tradeoffs. 

Think about it!

It would be a lot of work to build streaming systems from scratch. Frameworks 
take care of the heavy lifting, so we can focus on the business logic. However, 
sometimes it is important to know how frameworks work internally.
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The Streamwork framework overview
Generally, streaming frameworks have two responsibilities:

•	 Provide an application programing interface (API) for users to hook up customer 
logic and build the job

•	 	Provide an engine to execute the streaming job

We will see the API later. It should be understood that the goal of this book is not to teach 
you how to use the Streamwork API. The framework is used only as a framework-agnostic 
tool. Let’s look at the engine first. The following diagram attempts to describe at a high 
level all of the moving pieces in the Streamwork framework. It should be understood 
that there is another process that starts each of the executors, and each executor starts  
a data source or a component. Each executor is standalone and does not stop or start 
other executors.

The framework is very simple in this chapter. However, all the components mentioned 
are comparable to real streaming frameworks components. The Streamwork framework 
will evolve in later chapters when more functionality is added.

Source executor
(source)

Operator executor
(operator 1)

Operator executor
(operator 2)

A source executor is 
responsible for a source 
component continuously.  

The operator executors are 
responsible for running operator 

components continuously.

Executors are connected with 
event queues. The ability to add operators 

onto operators is limitless.
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Zooming in on the Streamwork engine
We are going to zoom in to show in detail how executors apply user logic on 
events.

Operator 1

apply(event)

Source executor
(source)

Operator executor
(operator 1)

Operator executor
(operator 2)

Let’s zoom in to show how logic is 
executed in a source executor and  

two operator executors.

e3e4

Source executor

source.getEvents()

Source

getEvents()

Operator executor

operator.apply(e2)

The data source 
object accepts 
events into the 

job from outside 
world.

In a user-defined 
source object, User 

logic is implemented in 
this getEvents() 

function.

In a user-defined 
operator object, User 

logic is implemented in 
this apply() function.

The event queue 
between the two 

executors
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If we ignore the executors and only look at user-defined objects, we get a new diagram to 
the right, which is a cleaner (more abstract) view of the streaming system without any 
details. This diagram (we call it a logical plan) is a high-level abstraction that shows the 
components and structure in the system and how data can logically flow through them. 
From this diagram, we can see how the source object and the operator object are con-
nected via a stream to form a streaming job. It should be known that a stream is nothing 
more than a continuous transfer of data from one component to another. 

Core streaming concepts
There are five key concepts in most streaming systems: event, job, source, operator, and 
stream. Keep in mind that these concepts apply to most streaming systems with a one-
to-one mapping.

Operator

apply(evnt)

Source executor

source.getEvents()

Source

getEvents()

Operator executor

operator.apply(e2)

eventsevents

Source Operator

The logical plan of a job
The logical plan of a job

streamstream

e3e4
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More details of the concepts
The diagram below shows the five key concepts, event, job, source, operator, and stream, 
with more details. 

Source Operator

Job, also called a Pipeline or a Topology, is an 
implementation of a streaming system. A job is 

composed of components (sources and operators) 
and streams connecting the components.

A stream refers to the 
ongoing delivery of events. 

Event, also known as  
Tuple, Element, or Message 
in different scenarios, is a 
single piece of undividable 

data in a stream.

Source is the part that 
brings data from the 
outside world into a 

streaming system. In other 
words, sources are the 

entry points of streaming 
systems for data.

Operator, also called 
Transform, is the part 

that receives and 
processes events. 

Operators are where the 
logic will occur.

We will cover how the concepts are used in a streaming system as we walk through the 
different parts of your first streaming job. For now, make sure the five key concepts are 
crystal clear.
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The streaming job execution flow
With the concepts we have learned 
in the last two pages, you can now 
visualize this vehicle count stream-
ing job of two components and one 
stream between them to look like 
the image on the right.

sensor reader vehicle counter

sourcesource operatoroperator

stream of stream of 
vehicle vehicle 
eventsevents

•	 The sensor reader brings data in from the sensor and stores the events in a queue. 
It is the source.

•	 The vehicle counter is responsible for counting vehicles that pass through the 
stream. It is an operator.

•	 The continuous moving of data from the source to the operator is the stream of 
vehicle events.

The sensor reader is the start of the job, and the vehicle counter is the end of the job. The 
edge that connects the sensor reader (source) and the vehicle counter (operator) rep-
resents the stream of vehicle types (events) flowing from the sensor reader to the vehicle 
counter.

In this chapter, we are going to dive into the system above. It will run on your local 
computer with two terminals: one accepts user input (the left column), and the other one 
shows the outputs of the job (the right column).

job input job output

car
truck
car

SensorReader --> car
VehicleCounter --> 
 car: 1
SensorReader --> truck
VehicleCounter --> 
 car: 1
 truck: 1
SensorReader --> car
VehicleCounter --> 
 car: 2
 truck: 1
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Your first streaming job
Creating a streaming job using the Streamwork API is straightforward with the follow-
ing steps:

1.	 Create an event class.

2.	 Build a source.

3.	 Build an operator.

4.	 Connect the components.

Your first streaming job: Create your event class
An event is a single piece of data in a stream to be processed by a job. In the Streamwork 
framework, the API class Event is responsible for storing or wrapping user data. Other 
streaming systems will have a similar concept. 

In your job, each event represents a single vehicle type. To keep things simple for now, 
each vehicle type is just a string like car and truck. We will use VehicleEvent as 
the name of the event class, which is extended from the Event class in the API. Each 
VehicleEvent object holds vehicle information that can be retrieved via the get-
Data() function.

public class VehicleEvent extends Event {
  private final String vehicle;
  
  public VehicleEvent(String vehicle) {
    this.vehicle = vehicle;
  }
  
  @Override
  public String getData() {
    return vehicle;
  }
}

The internal string for 
vehicles

The constructor that takes vehicle as 
a string and stores it

Gets vehicle data stored in the event



	 Your first streaming job� 37

What is a lifecyle hook?

Lifecycle hooks in software frameworks are methods that are called in some type 
of repeatable pattern by the framework in which they reside. Typically, these 
methods allow developers to customize how their application behaves during a 
life cycle phase of a framework they are building their application in. In the case 
of the Streamwork framework we have a lifecycle hook (or method) called 
getEvents(). It is called continuously by the framework to allow you to pull 
data in from the outside world. Lifecyle hooks allow developers to write the logic 
they care about and to let the framework take care of all the heavy lifting.

All streaming frameworks have an API that gives you the ability to write the logic that 
only you care about for data sources. All data source APIs have some type of lifecycle hook 
that will be called to accept data in from the outside world. This is where your code 
would be executed by the framework.

Your first streaming job: The data source
A source is the component that brings data from the outside world into a streaming 
system. The earth icon is a representation of data that would be outside of your job. In 
your streaming job the sensor reader accepts vehicle type data from a local port into 
the system.

SensorReader: Source

getEvents()

VehicleCounter: Operator

apply(event)

sensor reader vehicle counter
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Your first streaming job: The data source (continued)
In your job the sensor reader will be reading events from the sensor. In this exercise you 
will simulate the bridge sensor by creating the 
events yourself and sending them to the open 
port on your machine that the streaming job is 
listening to. The vehicle types you send to the 
port will be picked up by the sensor reader and 
emitted into the streaming job to show what it’s 
like to process an infinite (or unbounded) 
stream of events.

truck

the sensor

The Java code for the SensorReader class looks like:

public class SensorReader extends Source {
  private final BufferedReader reader;
  public SensorReader(String name, int port) {
    super(name);
    reader = setupSocketReader(port);
  }
  
  @Override
  public void getEvents(List<Event> eventCollector) {
    String vehicle = reader.readLine();
    eventCollector.add(new VehicleEvent(vehicle));
    System.out.println("SensorReader --> " + vehicle);
  }
}

The lifecycle hook of the 
streaming system to 

execute user defined logic

Read one vehicle 
type from input.

Emit the string into 
the collector.

SensorReader: Source

getEvents()

1. getEvents()  
is the user-defined 
logic to read data 

from the IoT sensor.

2. Events are 
emitted to the 

outgoing stream 
(the queue).
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Your first streaming job: The operator
Operators are where the user processing logic will occur. They are responsible for accept-
ing events from upstream to process and generating output events; hence, they have both 
input and output. All of the data processing logic in your streaming systems will typi-
cally go into the operator components.

To keep your job simple, we have only one source and one operator in it. The current 
implementation of the vehicle counter is to just count the vehicles and then to log the 
current count in the system. Another, and potentially better, way to implement the sys-
tem is for the vehicle counter to emit vehicles to a new stream. Then, logging the results 
can be done in an additional component that would follow after the vehicle counter. It is 
typical to have a component that has only one responsibility in a job.

By the way, Sid is the CTO. He is kind of old-fashioned sometimes, but he is very 
smart and interested in all kinds of new technologies.

VehicleCounter: Operator

apply(event)

sensor reader vehicle counter

The core processing logic 

goes into operators.

VehicleCounter: Operator

apply(event)
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VehicleCounter: Operator

apply(event)

1. Accept incoming 
events.

2. apply() the user-defined 
logic to perform on data events.

Your first streaming job: The operator (continued)
Inside the VehicleCounter component, a <vehicle, count> map is used to store 
vehicle type counts in memory. It is updated accordingly when a new event is received.

In this streaming job, the vehicle counter is 
the operator that counts vehicle events. This 
operator is the end of the job, and it doesn’t 
create any output to the downstream 
operators.

Key(Vehicle) Value(Count)

car 2

truck 1

van 1

public class VehicleCounter extends Operator {
  private final Map<String, Integer> countMap =
    new HashMap<String, Integer>();

  public VehicleCounter(String name) {
    super(name);
  }

  @Override
  public void apply(Event event,List<Event> collector) {
    String vehicle = ((VehicleEvent)event).getData();
    Integer count = countMap.getOrDefault(vehicle, 0);
    count += 1;
    countMap.put(vehicle, count);
    System.out.println("VehicleCounter --> ");
    printCountMap();
  }
}

Retrieve the count 
from the map.

Increase the count.

Save the count back to 
the map.

Print the current 
count.
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Your first streaming job: Assembling the job
To assemble the streaming job, we need to add both the SensorReader source and the 
VehicleCounter operator and connect them. There are a few hooks in the Job and 
Stream classes we built for you: 

•	 Job.addSource() allows you to add a data source to the job.

•	 Stream.applyOperator() allows you to add an operator to the stream.

job

SensorReader VehicleCounter1. Create the job 
object.

2. Add the source 
object and get a 

stream.

3. Apply the operator 
to the stream.

The following code matches the steps outlined in the previous image:

public static void main(String[] args) {
  Job job = new Job();
  Stream bridgeOut=job.addSource(new SensorReader());

  bridgeOut.applyOperator(newVehicleCounter());

  JobStarter starter = new JobStarter(job);
  starter.start();
}

Create the job object.

Add the source object and get a stream.

 Apply the operator 
to the stream.

Start the job.
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Executing the job
All you need to execute the job is a Mac, Linux, or Windows machine with access to a 
terminal (command prompt on Windows). You will also need a few tools to compile and 
run the code: git, Java development kit (JDK) 11, Apache Maven, Netcat (or Nmap on 
Windows). After all the tools are installed successfully, you can pull the code down and 
compile it:

$ git clone https://github.com/nwangtw/GrokkingStreamingSystems.git
$ cd GrokkingStreamingSystems
$ mvn package

The mvn command above should generate the following file: target/gss.jar. Finally, to 
run the streaming job, you’ll need two terminals: one for running your job and the other 
for sending data for your job to ingest.

Open a new terminal (the input terminal), and run the following command. (Note that 
nc is the command on Mac and Linux; on Windows, it is ncat). This will start a small 
server at port 9990 that can be connected to from other applications. All user inputs in 
this terminal will be forwarded to the port.

$ nc -lk 9990

Then, in the original terminal (the job terminal) that you used to compile the job, run 
the job with the following command:

$ java -cp target/gss.jar com.streamwork.ch02.job.VehicleCountJob

1. Open socket at port 9990 
in the input terminal. This is 
where you send data into 
the streaming job.

2. Start the streaming job. It 
will connect to the socket at 
port 9990 to mimic the 
sensor reader data source.

$ nc -lk 9990

Input terminal

$ java -cp target/gss.jar \
com.streamwork.ch02.job.VehicleCountJob

Job terminal
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SensorReader --> car
VehicleCounter -->
 car: 1

Inspecting the job execution
After the job is started, type car into the input terminal, and hit the return key, then the 
count will be printed in the job terminal.

Now if you continue typing in truck in the input terminal, the counts of car and 
truck will be printed in the job terminal.

You can keep typing in different type of vehicles (to make it more interesting, you can 
prepare a bunch of vehicles in a text editor first and copy/paste them into the input ter-
minal), and the job will keep printing the running counts, as in the example below, until 
you shut down the job. This demonstrates that as soon as data enters the system your 
streaming job takes action on it without delay.

SensorReader --> truck
VehicleCounter -->
 car: 1
 truck: 1The count map in the 

VehicleCounter operator 
has a new entry for truck.

truck

car
car
.
.
.

SensorReader --> car
VehicleCounter -->
 car: 2
 truck: 1
SensorReader --> car
VehicleCounter -->
 car: 3
 truck: 1

SensorReader source emits 
“car” into the system.

VehicleCounter operator processes “car” 
and adds it to the total car count.

car

Input terminal Job terminal
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Look inside the engine
You have learned how the components and the job are created. You also observed how 
the job runs on your computer. During the job execution, you’ve hopefully noticed the 
events automatically move from the sensor reader object to the vehicle counter object 
without you needing to implement any additional logic. Fancy, right?

job

add source SensorReader VehicleCounter
apply operator

Your job or components don’t run by themselves. They are driven by a streaming engine. 
Let’s take a look under the hood and inspect how your job is executed by the Streamwork 
engine. There are three moving parts (at the current state), and we are going to look into 
them one by one: source executor, operator executor, and job starter.

VehicleCounter: Operator

apply(event)

SensorReader: Source

getEvents()

Source executor

source.getEvents()

operator executor

operator.apply()
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Look inside the engine: Source executors
In the Streamwork we’ve built for you, the source executor continuously runs data 
sources by executing over infinite loops that pull data in from the outside world to be 
placed on an outgoing queue within the streaming job. Even though there is a yes deci-
sion on Exit, yes will never be reached.

Source
(SensorReader)

start

Invoke 
Source.getEvents() 

to accept new 
events.

Push events to 
outgoing queue.

exit

end

yes

no

Source objects are one of the 
components in streaming jobs 
that are implemented by users 
of the streaming framework to 
pull data in from the outside 
world.

Data flows in 
this direction.

Source executors invoke hooks 
to execute methods on source 
objects and push all received 
events into the outgoing event 
queue. 

Source executor runs the user- 
provided source object. Process starts 

here.

Outgoing queue

After a source 
execution, the 
process loops 
back over. 
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Look inside the engine: Operator executors
In the Streamwork, the operator executor works in a similar way to the source executor.  
The only difference is that it has an incoming event queue to manage. Even though there 
is a yes decision on Exit, yes will never be reached.

start

Pull events from 
incoming queue.

Push events to 
outgoing queue.

exit

end

yes

no

Operator executor runs the 
user-provided operator object.

Process starts 
here.

Outgoing queue

After an 
operator 
execution, the 
process loops 
back over.

Operator
(VehicleCounter)

Invoke 
Operator.apply() 
to process events.

Incoming queue

In each loop, 
executor takes one 
event from the 
incoming event 
queue and then uses 
it as parameter to 
invoke the apply() 
function of the user- 
provided operator.

User-provided 
operator object
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Look inside the engine: Job starter
The JobStarter is responsible for setting up all the moving parts (executors) in a job 
and the connections between them. Finally, it starts the executors to process data.  After 
the executors are started, events start to flow through the components.

VehicleCounter: Operator

apply(event)

SensorReader: Source

getEvents()

Source executor

source.getEvents()

operator executor

operator.apply(E2)

1. Create source and 
operator executors. 2. Create the intermediate 

event queue to connect 
the source and operator 
executors.

3. Start the executors.

Remember!

Keep in mind that this is the architecture of a typical streaming engine, and an 
attempt to generalize how frameworks work at a high level. Different streaming 
frameworks may work in different ways.
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Keep events moving
Let’s zoom out to look at the whole engine and its moving parts, including the user- 
 defined components of the actual job.

SensorReader: Source

getEvents()

Source executor

source.getEvents()

operator executor

operator.apply(E2)

VehicleCounter: Operator

apply(event)

The source executor keeps 
invoking the getEvents() 
function in the SensorReader 
class to accept user input and 
pushing the vehicle types to the 
event queue.

Job starter sets up the 
executors and the 
intermediate event queue. 
Then it starts the executor 
processes.

The operator executor keeps 
pulling vehicle types one by 
one from the incoming event 
queue and invoking the 
apply() function of the 
VehicleCounter object  
with the data.

User provided 
source object

User provided 
operator object

After our job is started, all the executors start running concurrently or, in other words, 
at the same time!
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The life of a data element
Let’s discuss a different aspect of streaming systems and take a look at the life of a single 
event. When you input car and press the enter key in the input terminal, the event will 
travel through the streaming system, as explained in the following diagram.

SensorReader: Source

getEvents()

Source executor

source.getEvents()

operator executor

operator.apply(E2)

VehicleCounter: Operator

apply(event)

1. The user-defined logic 
retrieves events from the 
outside data source.

2. Source executor puts 
the data event on the 
intermediate event queue.

3. Operator executor pulls  
a data event from the 
intermediate event queue 
and sends it to the operator.

4. Apply user-defined logic 
on the events.
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Reviewing streaming concepts
Congratulations on finishing your first streaming job! Now, let’s take a few minutes to 
step back and review the key concepts of streaming systems.

Source Operator

Job, also known as a Pipeline or a 
Topology, is an implementation of a 
streaming system. A job is composed of 
components (sources and operators) and 
streams connecting the components.

A stream refers to the ongoing delivery 
of events. Event, also known as Tuple, 
Element, or Message in different 
scenarios, is a single piece of undividable 
data in a stream.

Operator, also called Transform, is the 
part that receives and processes events. 
Operators are where the logic will occur.

Source is the part that brings data from 
the outside world into a streaming 
system. In other words, sources are the 
entry points for data in streaming 
systems.
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Summary
A streaming job is a system that processes events in real time. Whenever an event happens, 
the job accepts it into the system and processes it. In this chapter, we have built a simple job 
that counts vehicles entering a bridge. The following concepts have been covered:

•	 	Streams and events

•	 	Components (sources and operators)

•	 	Streaming jobs

In addition, we looked into our simple streaming engine to see how your job is really 
executed. Although this engine is overly simplified, and it runs on your computer instead 
of a distributed environment, it demonstrates the moving parts inside a typical stream-
ing engine.

Exercises
1.	 	What are the differences between a source and an operator?

2.	 	Find three examples in real life that can be simulated as streaming systems. (If you 
let us know, they might be used in the next edition of this book!)

3.	 	Download the source code and modify the SensorReader source to generate 
events automatically.

4.	 	Modify your VehicleCounter logic to calculate the collected fees in real time. 
You can decide how much to charge for each vehicle type.

5.	 	The VehicleCounter operator in the first job has two responsibilities: 
counting vehicles and printing the results, which is not ideal. Can you change the 
implementation and move the printing logic to a new operator?
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In the previous chapter, AJ and Miranda tackled keeping a real-time count 
of traffic driving over the bridge using a streaming job. The system she built 
is fairly limited in processing heavy amounts of traffic. Can you imagine 
going through a bridge and tollbooth with only one lane during rush hour? 
Yikes! In this chapter, we are going to learn a basic technique to solve a fun-
damental challenge in most distributed systems. This challenge is scaling 
streaming systems to increase throughput of a job or, in other words, pro-
cess more data.

In this chapter

•	 parallelization

•	 data parallelism and task parallelism

•	 event grouping

3Parallelization 
and data grouping

Nine people can’t make a baby in a month.

—Frederick P. Brooks
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The sensor is emitting more events
In the previous chapter, AJ tackled keeping a real-time count of traffic driving over the 
chief ’s bridge using a streaming job. Detecting traffic with one sensor emitting traffic 
events was acceptable for collecting the traffic data. Naturally, the chief wants to make 
more money, so he opted to build more lanes on the bridge. In essence, he is asking for 
the streaming job to scale in the number of traffic events it can process at one time.

The single lane system

The bridge

The sensor detects and emits out  
vehicle types as events. AJ’s system  
picks up the events and keeps track  
of the count of each vehicle type that 
has crossed the bridge.

van

A typical solution in computer 
systems to achieve higher 
throughput is to spread out  
the calculations onto multiple 
processes, which is called 
parallelization.

The multi-lane system

truck

van

Each sensor is assigned to 
read events from one lane. 
The events are both emitted 
from one point in the system.

Similarly, in streaming systems, the calcula-
tion can be spread out to multiple instances. 
You can imagine with our vehicle count 
example that having multiple lanes on the 
bridge and having more tollbooths could be 
very helpful for accepting and processing 
more traffic and reducing waiting time.
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Even in streaming, real time is hard
Increasing lanes caused the job to fall behind

Sensor
Reader

Vehicle
Counter

Sensor
Reader

Vehicle
Counter

Sensor
Reader

Vehicle
Counter

We will scale our 
previous job from this ….

…. to this.

The increased load on the streaming 
job from sensor events is too much for a 
single sensor reader or vehicle counter to 

process. 

Couldn’t we add more instances 
of the sensor reader and the vehicle 

counter? 

But... How do we decide which 
data goes where with multiple 

instances? 
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New concepts: Parallelism is important
Parallelization is a common technique in computer systems. The idea is that a time- 
consuming problem can often be broken into smaller sub-tasks that can be executed 
concurrently. Then, we can have more computers working on the problem cooperatively 
to reduce the total execution time greatly.

Why it’s important
Let’s use the streaming job in the previous chapter as an example. If there are 100 vehicle 
events waiting in a queue to be processed, the single vehicle counter would have to process 
all of them one by one. In the real world, there could be millions of events every second 
for a streaming system to process. Processing these events one by one is not acceptable in 
many cases, and parallelization is critical for solving large-scale problems.

Pretend each of these 
queues are 100 
elements long.

Only one operator to 
pull events off and 
process

More than one operator to pull 
events off and process. In this 
specific scenario we have a 
parallelization of two. We are doing 
twice the amount of work in the 
same time window.
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New concepts: Data parallelism
It is not fast enough to solve the counting problem with one computer. Luckily, the chief has 
multiple computers on hand—because what tollbooth IT operation center doesn’t? It is a 
reasonable idea to assign each vehicle event to a different computer, so all the computers can 
work on the calculation in parallel. This way you would process all vehicles in one step instead 
of processing them one by one in 100 steps. In other words, the throughput is 100 times 
greater. When there is more data to process, more computers instead of one bigger computer 
can be used to solve the problem faster. This is called horizontal scaling.

Pretend this queue is 
100 elements long.

Pretend we have  
100 operators here.

Each operator is 
executing the same 
operator on a 
different subset of 
the whole data 
collection.

A quick note

It should be noted that modern day CPUs 
have internal instruction pipelines to 
improve processing performance dramati-
cally. For this case (and the rest of the book), 
we will keep the calculations simple and 
ignore this type of optimization whenever 
we refer to parallelization.
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New concepts: Data execution independence
Say the phrase data execution independence out loud, and think about what it could 
mean. This is quite a fancy term, but it isn’t as complex as you think.

Data execution independence, in regards to streaming, means the end result is the 
same no matter the order of the calculations or executions being performed across data 
elements. For example, in the case of multiplying each element in the queue by 4, they 
will have the same result whether they are done at the same time or one after another. 
This independence would allow for the use of data parallelism.

multiply by 4

multiply by 4

multiply by 4

multiply by 4

multiply by 4

multiply by 4

Each operation performed always 
results in the outcome of 4 either 
consecutively or synchronously. 
Because 1 * 4 = 4.  There is no 
need to use data from any other 
element in the queue. Therefore, 
we have data execution 
independence.

Take all elements at 
the same time to 
multiply by 4.
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New concepts: Task parallelism
Data parallelism is critical for many big data systems as well as general distributed sys-
tems because it allows developers to solve problems more efficiently with more comput-
ers. In addition to data parallelism, there is another type of parallelization: task 
parallelism, also known as function parallelism. In contrast to data parallelism, which 
involves running the same task on different data, task parallelism focuses on running 
different tasks on the same data.

A good way to think of task parallelism is to look at the streaming job you studied in 
chapter 2. The sensor reader and vehicle counter components keep running to process 
incoming events. When the vehicle counter component is processing (counting) an 
event, the sensor reader component is taking a different, new event at the same time. In 
other words, the two different tasks work concurrently. This means an event is emitted 
from the sensor reader, then it is processed by the vehicle counter component.

Both are executing at the same time 
performing their specific tasks.

An event is processed by the two 
components one by one.

In streaming systems, task 
parallelism is about breaking the 
whole process into smaller steps.
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Data parallelism vs. task parallelism
Let’s recap:

•	 Data parallelism represents that the same task is executed on different event sets 
at the same time.

•	 Task parallelism represents that different tasks are executed at the same time.

Data parallelism is widely used in distributed systems to achieve horizontal scaling. In 
these systems, it would be relatively easy to increase parallelization by adding more com-
puters. Conversely, with task parallelism, it normally requires manual intervention to 
break the existing processes into multiple steps to increase parallelization.

Streaming systems are combinations of data parallelism and task parallelism. In a 
streaming system, data parallelism refers to creating multiple instances of each compo-
nent, and task parallelism refers to breaking the whole process into different compo-
nents to solve the problem. In the previous chapter, we have applied the task parallelism 
technique and broken the whole system into two components. In this chapter, we are 
going to learn how to apply the data parallelism technique and create multiple instances 
of each component.

In most cases, if you see the term parallelization 
or parallelism without the data or task in stream-
ing systems, it typically refers to data parallelism. 
This is the convention we are going to apply in 
this book. Remember that both parallelisms are 
critical techniques in data processing systems.

Sensor
Reader

Vehicle
Counter

Sensor
Reader

Vehicle
Counter

Streaming systems are 
combinations of data parallelism and 

task parallelism. 
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Parallelism and concurrency
Is there a difference?
This paragraph could easily start a contentious tech uproar, potentially as easily as writ-
ing a paragraph to justify the use of tabs over spaces. During the planning sessions of this 
book, these concepts came up several times. Typically, these conversations would always 
end up with us asking ourselves which term to use.

Parallelization is the term we’ve decided to use when explaining how to modify your 
streaming jobs for performance and scale. More explicitly in the context of this book, 
parallelism refers to the number of instances of a specific component. Or you could say 
parallelism is the number of instances running to complete the same task. Concurrency, 
on the other hand, is a general word that refers to two or more things happening at the 
same time.

It should be noted that we are using threads in our streaming framework to execute 
different tasks, but in real-world streaming jobs you would typically be running multiple 
physical machines somewhere to support your job. In this case you could call it parallel 
computing. Some readers may question whether parallelization is the accurate word 
when we are only referring to code that is running on a single machine. This is yet 
another question we asked ourselves. Is this correct for us to write about? We have 
decided not to cover this question. After all, the goal of this book is that, by the end, you 
can comfortably talk about topics in streaming. Overall, just know that parallelization is 
a huge component of streaming systems, and it is important for you to get comfortable 
talking about the concepts and understanding the differences well.

Parallelization: many 
of the same thing at the same 

time.
Concurrency: many things at the 

same time. 
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Parallelizing the job
This is a good time to review the state of the last streaming job we studied. You should 
have a traffic event job that contains two components: a sensor reader and a vehicle 
counter. As a refresher, the job can be visualized as the below image.

This implementation has worked for the previous chapter. However, we will now intro-
duce a new component we decided to call the event dispatcher. It will allow us to route 
data to different instances of a parallelized component. With the eventDispatcher 
the chapter 2 job structure will look like the following. The image below is an end result 
of reading through this chapter and working through the steps to build up the job. By the 
end of this chapter, you will have added two instances of each component and under-
stand how the system will decide to send data to each instance.

Source executor

Sensor 
reader

Operator executor

Vehicle
counter

The upstream 
component executor

The downstream 
component executor

Source instance executor 0

Sensor 
reader

Source instance executor 1

Sensor 
reader

Source executor

E v e n t 
dispatcher

Operator instance executor 0

Vehicle 
counter

Operator instance executor 1

Vehicle 
counter

Operator executor
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Parallelizing components
The following image shows the end goal of how we want to parallelize the components 
in the streaming job. The event dispatcher will help us distribute the load across down-
stream instances.

Two instances of the sensor 
reader exist. This can be 
considered a parallelized 
component.

Two instances of the vehicle 
counter component exist.  
This can be considered a 
parallelized component.

Source instance executor 0

Sensor 
reader

Source instance executor 1

Sensor 
reader

Source executor

Operator instance executor 0

Vehicle 
counter

Operator instance executor 1

Vehicle 
counter

Operator executor

How does the event 
dispatcher decide which event 
goes to which instance of each 

component?

E v e n t 
dispatcher
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Parallelizing sources
First, we are only going to parallelize the data 
sources in the streaming job from one to two. To 
simulate a parallelized source, this new job will need 
to listen on two different ports to accept your input. 
The ports we will use are 9990 and 9991. We have 
updated the engine to support parallelism, and the 
change in the job code is very straightforward:

Stream bridgeStream = job.addSource(
  new SensorReader("sensor-reader", 2, 9990)
);

To run the job, you need to first create two input terminals and execute the command 
with different ports:

Then, you can compile and execute the sample code in a separate job terminal:

$ mvn package
$ java -cp target/gss.jar \
  com.streamwork.ch03.job.ParallelizedVehicleCountJob1

At this point you should have three ter-
minals open to run your job: input termi-
nal 1, input terminal 2, and the job 
terminal. Input terminals 1 and 2 are 
where you will be typing vehicle events to 
be picked up by the streaming job. The 
next page will show some sample output.

Networking FYI

Due to limitations of networking, we cannot 
have more than one process, thread, or com-
pute instance listening on the same port. 
Since we have two of the same sources run-
ning on the same machine for our learning 
purposes, we have to run the extra instance 
of source on a different port.

instance 1

Source executor

instance 0Port 9990

Port 9991

$ nc -lk 9990

Input terminal 1 Input terminal 2

$ nc -lk 9991
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Viewing job output

Operator executor

instance 0

SensorReader :: instance 0 -->
   car
VehicleCounter :: instance 0 --> 
  car: 1

SensorReader:: instance 0 --> 
  truck
VehicleCounter :: instance 0 --> 
  car: 1
  truck: 1

SensorReader:: instance 1 -->
  van
VehicleCounter :: instance 0 --> 
  car: 1
  truck: 1
  van: 1

SensorReader:: instance 1 --> 
  car
VehicleCounter :: instance 0 --> 
  car: 1
  truck: 2
  van: 1

car
truck

van
truck

Input terminal 1 Input terminal 2 Job terminal

Two sensor readers 
are pulling in data.

One vehicle counter is 
receiving events from both 
sensor reader instances.

Event dispatcher tells the event where to 
go next. All events after the source are 
routed to the same single vehicle counter 
instance through this event dispatcher.

instance 1

Source executor

instance 0
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Parallelizing operators
Running the new job
Now, let’s parallelize the VehicleCounter operator:

bridgeStream.applyOperator(
  new VehicleCounter("vehicle-counter", 2)); 

Keep in mind we are using two parallelized sources, so we will need to execute the same 
netcat command as we did before in two separate terminals. For a refresher, each 
command tells Netcat to listen for connections on the ports specified in each 
command.

Then, you can compile and execute the sample code in a third, separate job terminal:

$ mvn package
$ java -cp gss.jar \
  com.streamwork.ch03.job.ParallelizedVehicleCountJob2

This job that runs will have two sources and operators. It can be represented by the dia-
gram below. The job output follows.

instance 1

Source executor

instance 0

instance 1

Operator executor

instance 0

$ nc -lk 9990

Input terminal 1 Input terminal 2

$ nc -lk 9991
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instance 1

Operator executor

instance 0

instance 1

Source executor

instance 0

Viewing job output

SensorReader :: instance 0 -->
  car
VehicleCounter :: instance 0 --> 
  car: 1

SensorReader:: instance 0 --> 
  truck
VehicleCounter :: instance 1 --> 
  truck: 1

SensorReader:: instance 1 -->
  van
VehicleCounter :: instance 0 --> 
  car: 1
  van: 1

SensorReader:: instance 1 --> 
  car
VehicleCounter :: instance 1 --> 
  car: 1
  truck: 1

car
truck

van
car

Input terminal 1 Input terminal 2 Job terminal

Two sensor readers 
are pulling in data.

Two vehicle counters 
are receiving data 
from event dispatcher 
to process.

Did you notice a pattern that 
vehicle events are processed by the 

instances of the vehicle counter 
operator in turn?
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Events and instances

VehicleCounter :: instance 0 --> 
  car: 1

… (Omitted for brevity)

VehicleCounter:: instance 1 -->  
  car: 1
  truck: 1

If you take a close look at the results of the vehicle counter instances, you will see that 
both of them receive a different car event. Depending on how the system is set to run this 
type of behavior, it may not be desirable for a streaming job. We will study the new con-
cept of event grouping later to understand the behavior and how to improve the system. 
For now, just understand that any vehicle can be processed by either of the two tollbooth 
instances.

Another important concept you need to understand here is event ordering. Events have 
their order in a stream—after all, they all reside in queues, typically. How do you know 
if one event will be processed before another? Generally, two rules apply:

•	 Within an instance, the processing order is guaranteed to be the same as the 
original order (the order in the incoming queue).

•	 Across instances, there is no guarantee about the processing order. It is possible 
that a later event can be processed and/or finished earlier than another event that 
arrived earlier, if the two events are processed by different instances.

A more concrete example follows.

A car is processed by 
VehicleCounter 0.

Another car is processed 
by VehicleCounter 1.
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instance 1

Operator executor

instance 0

Event ordering

SensorReader :: instance 0 -->
  car
VehicleCounter :: instance 0 --> 
  car: 1

SensorReader:: instance 0 --> 
  truck
VehicleCounter :: instance 1 --> 
  truck: 1

SensorReader:: instance 1 -->
  van
VehicleCounter :: instance 0 --> 
  car: 1
  van: 1

SensorReader:: instance 1 --> 
  car
VehicleCounter :: instance 0 --> 
  car: 1
  truck: 1

car
truck

van
car

Input terminal 1 Input terminal 2 Job terminal

car, truck, van, car, …

Let’s look at the four vehicle events that were entered in the input terminals. The first 
and third vehicles are car and van, and they are sent to VehicleCounter 
instance 0, while the second and the fourth events truck and car are routed to 
VehicleCounter instance 1.

In the Streamwork engine, the two operator instances are executed independently. 
Streaming engines normally guarantee that the first and the third vehicles are processed 
in their incoming order because they are processed in the same instance. However, there 
is no guarantee that the first vehicle car is processed before the second vehicle truck, 
or the second vehicle truck is processed before the third vehicle van because the two 
operator processes are independent of each other.
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Event grouping
Up until now your parallelized streaming job had vehicle counter instances that were 
getting events randomly (really, pseudorandomly) routed to the vehicle counter instances.

This pseudorandom routing is acceptable in many cases, but sometimes you may prefer 
to predictably route events to a specific downstream instance. This concept of directing 
events to instances is called event grouping. Grouping may not sound very intuitive, so let 
us try to explain a bit: all the events are divided into different groups, and each group is 
assigned a specific instance to process. There are several event grouping strategies. The 
two most commonly used are:

•	 Shuffle grouping—Events are pseudorandomly distributed to downstream 
components,

•	 Fields grouping—Events are predictably routed to the same downstream 
instances based on values in specified fields in the event.

Normally, event grouping is a functionality baked into streaming frameworks for reuse 
by developers. Flip through the next few pages to go a little deeper into how these two 
different grouping strategies work.

SensorReader:: instance 0 --> 
  car
VehicleCounter :: instance 0 --> 
  car: 1

… (Omitted for brevity)

SensorReader:: instance 1 --> 
  car
VehicleCounter:: instance 1 -->  
  car: 1
  van: 1

A car is processed by 
VehicleCounter 0.

The streaming job has  
no predictable behavior  
of how it will route  
data to either 
vehicleCounter 0 or 
vehicleCounter 1.

Another car is processed by 
VehicleCounter 1.
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Shuffle grouping
Shuffle grouping defined in few words is the random distribution of data elements from 
a component to a downstream operator. It allows for a relatively even distribution of load 
to downstream operators.

Round robin is the way to perform a shuffle grouping in many frameworks. In this 
grouping strategy, downstream instances (aka the incoming queues) are picked in equal 
portions and in circular order. Compared to a shuffle grouping based on random num-
bers, the distribution can be more even, and the calculation can be more efficient. The 
implementation is similar to the diagram below. Note that in the diagram the two 
truck vehicles are counted by two different VehicleCounter instances. 

Queue elements 
alternate which vehicle 
counter instance they 
will be delivered to.

The queue from an 
upstream component

instance 1

Operator executor

instance 0

T
ru

ck

C
a

r

Va
n

T
ru

ck
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Shuffle grouping: Under the hood
To make sure that events are routed evenly across instances, most streaming systems use 
the round robin method for choosing the next destination for their event. 

The counter starts at 0. The counter is 
incremented after each request to evenly 
spread events across instances. It will be reset 
to 0 once it exceeds the number of available 
downstream instances (the parallelism).

Incoming events

Event group 0

Event group 1

instance 1

Operator executor

instance 0

counter = 0;
while (e = readEvent()) {
  event _ group = counter;
  counter++;
  counter %= parallelism;
}

Shuffle grouping is a round robin 
implementation under the hood in our 

Streamwork engine.
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Fields grouping
Shuffle grouping works well for many use cases. However, if you needed a way to predict-
ably send elements, shuffle grouping won’t work. Fields grouping is a good candidate to 
assist with a predictable routing pattern for your data processing needs. It works by mak-
ing a decision on where to route data based on fields out of the streamed event element 
(usually designated by the developer). Field grouping is also called group by or group by 
key in many scenarios.

In this chapter’s streaming job, we take each vehicle that comes in from the bridge and 
send them to either vehicle counter 0 or vehicle counter 1 based on the vehicle type, so 
the same type of vehicle is always routed to the same vehicle counter instance. By doing 
this, we keep the count of individual vehicle types by instance (and more accurately).

Cars and vans will always be 
routed to this instance.

Queue elements are routed to instances based on specific information 
(fields or properties) in the event.

Trucks will always be 
routed to this instance.

The queue from an 
upstream component

instance 1

Operator executor

instance 0

Va
n

Va
n

C
a

r

T
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ck

T
ru

ck

Va
n
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Fields grouping: Under the hood
To make sure the same vehicle events are always assigned to the same group (routed to 
the same instance), typically a technique called hashing is used. Hashing is a widely used 
type of calculation that takes a large range of values (such as strings) and maps them 
onto a smaller set of values (such as integer numbers). 

The most important property of hashing is that for the same input, the result is always 
the same. After we get the hashing result (usually some large integer, such as 98216,  
called the key), we perform this calculation:

	 key % parallelism

instance 1

Operator executor

instance 0

Event group 0

Event group 1

Incoming events

while (e = readEvent()) {
  long hash = hashEvent(e);
  event _ group = hash % parallelism;
}

Divides the key by the parallelism and 
returns the remainder to decide which 
instance of the downstream operator the 
event will be assigned to. In the case that 
there are two instances, the event whose 
key is 98216 will be routed to the incoming 
queue of instance 0 because 98216 % 2 
equals 0.
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Event grouping execution
The event dispatcher is a piece of the streaming system that sits between component 
executors and executes the event grouping process. It continuously pulls events from its 
designated incoming queue and places them on its designated outgoing queues based on 
the key returned from the grouping strategy. Keep in mind that all streaming systems 
have their own way of doing things. This overview is specific to the Streamwork frame-
work we provided for you.

The event dispatcher places 
the event on one of the 
of the multiple outgoing 
queues based on the result 
of the grouping execution.

 Grouping logic is executed 
during the transition from 
the incoming queue to the 
outgoing queues.  

The event dispatcher 
continuously pulls new 
events off of the 
incoming queue.

The upstream component 
instance executor 
continuously push events 
to the incoming queue.

The downstream operator 
instance executor will 
continuously pull events 
from its assigned queue.  

Incoming queue

This constant movement of data 
from one queue to another creates a 

stream.
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start

Pull events from 
incoming queue.

Push events to 
outgoing queue.

exit

end

yes

no

Outgoing queue

After an event 
dispatcher 
execution, the 
process loops 
back over.

Apply grouping 
strategy.

Incoming queue

The event dispatcher continuously pulls 
data from the incoming queue to be 
placed on the selected outgoing queue. Event dispatcher 

process starts.

In each loop, event 
dispatcher pulls 
events from the 
incoming queue, 
applies grouping 
strategy to choose 
an outgoing queue 
for each event, and 
then emits.

Look inside the engine: Event dispatcher
The event dispatcher is responsible for accepting events from the upstream component 
executor, applying the grouping strategy, and emitting the events to the downstream 
component.
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Applying fields grouping in your job
By applying fields grouping to your job, it will be much easier to keep an aggregated 
count of different vehicle types, as each vehicle type will always be routed to the same 
instance. With the Streamwork API, it is easy to enable fields grouping:

bridgeStream.applyOperator(
  new VehicleCounter("vehicle-counter", 2, new FieldsGrouping())
);

The only thing you need to do is to add an extra parameter when you call the apply-
Operator() function, and the Streamwork engine will handle the rest for you. 
Remember that streaming frameworks help you focus on your business logic without 
worrying about how the engines are implemented. Different engines might have differ-
ent ways to apply fields grouping. Typically, you may find the function with the name of 
groupBy() or {operation}ByKey() in different engines.

To run the example code, it is the same as before. First, you need to have two input 
terminals with the following commands running, so you can type in vehicle types.
Then, you can compile 

and execute the sample code in a third, separate job terminal:

$ mvn package
$ java -cp target/gss.jar \
  com.streamwork.ch03.job.ParallelizedVehicleCountJob3

Apply fields grouping.

$ nc -lk 9990

Input terminal 1 Input terminal 2

$ nc -lk 9991
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Event ordering
If you run the above commands, the job terminal will print an output similar to the 
following.

SensorReader :: instance 0 -->
  car
VehicleCounter :: instance 0 --> 
  car: 1

SensorReader:: instance 0 --> 
  truck
VehicleCounter :: instance 1 --> 
  truck: 1

SensorReader:: instance 0 -->
  van
VehicleCounter :: instance 0 --> 
  car: 1
  van: 1

SensorReader:: instance 0 --> 
  car
VehicleCounter :: instance 0 --> 
  car: 2
  van: 1

SensorReader:: instance 1 --> 
  truck
VehicleCounter :: instance 1 --> 
  truck: 2

car
truck
van

car
truck

Input terminal 1 Input terminal 2 Job terminal
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Comparing grouping behaviors
Let’s put the shuffle and grouping job outputs side by side and view the differences in 
behavior with the same job input. It doesn’t really matter which terminal the input is 
from, so we combine them into one.  See if you can identify the differences in how each 
job output differs.

SensorReader :: instance 0 ->
  car
VehicleCounter :: instance 0 -> 
  car: 1

SensorReader:: instance 0 -> 
  truck
VehicleCounter :: instance 1 -> 
  truck: 1

SensorReader:: instance 0 ->
  van
VehicleCounter :: instance 0 -> 
  car: 1
  van: 1

SensorReader:: instance 0 -> 
  car
VehicleCounter :: instance 1 -> 
  car: 1
  truck: 1

SensorReader:: instance 1 -> 
  truck
VehicleCounter:: instance 0 ->  
  car: 1
  truck: 1
  van: 1

SensorReader :: instance 0 ->
  car
VehicleCounter :: instance 0 -> 
  car: 1

SensorReader:: instance 0 -> 
  truck
VehicleCounter :: instance 1 -> 
  truck: 1

SensorReader:: instance 0 ->
  van
VehicleCounter :: instance 0 -> 
  car: 1
  van: 1

SensorReader:: instance 0 -> 
  Car
VehicleCounter :: instance 0 -> 
  car: 2
  van: 1

SensorReader:: instance 1 -> 
  truck
VehicleCounter:: instance 1 ->  
  truck: 2

Shuffle Grouping Job Output

Job Input: car truck van car truck …

Fields Grouping Job Output
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Summary
In this chapter, we’ve read about the fundamentals of scaling streaming jobs. Scalability is 
one of the major challenges for all distributed systems, and parallelization is a funda-
mental technique for scaling them up. We’ve learned how to parallelize components in a 
streaming job and about the related concepts of data and task parallelisms. In streaming 
systems, if the term parallelism is used without data and task, it normally refers to data 
parallelism.

When parallelizing components, we also need to know how to control or predict the 
routing of events with event grouping strategies to get the expected results. We can 
achieve this predictability via shuffle grouping or fields grouping. In addition, we also 
looked into the Streamwork streaming engine to see how parallelization and event 
grouping are handled from a conceptual point of view to prepare for the next chapters 
and real-world streaming systems.

Parallelism and event grouping are critical because they are useful for solving a criti-
cal challenge in all distributed systems: throughput. If a bottleneck component can be 
identified in a streaming system, you can scale it horizontally by increasing its parallel-
ism, and the system is capable of processing events at a faster speed.

Exercises
1.	 Why is parallelization important?

2.	 Can you think of any other grouping strategy? If you can think of one, can you 
implement it in Streamwork?

3.	 The field grouping in the example is using the hash of the string. Can you 
implement a different field grouping that uses the first character instead? What 
are the advantages and disadvantages of this new grouping strategy?



81

In the previous chapters, AJ has built a streaming job and then scaled it up. 
It works well for monitoring vehicles on the bridges. However, the structure 
of the job is quite simple, as the job is pretty much a list of operators. In this 
chapter, we are going to learn how to build more complicated streaming 
systems to solve additional problems in the real world.

In this chapter

•	 stream fan-out

•	 stream fan-in

•	 graph and DAG (directed acyclic graph)

4Stream graph

Bad programmers worry about the code. Good 

programmers worry about data structures and their 

relationships.

—Linus Torvalds
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A credit card fraud detection system
Sid has been impressed by the vehicle counting system AJ built, and he is thinking of new 
problems to solve with stream processing technology now. The one he is mostly inter-
ested in is a fraud detection problem, but he has one concern: the new system will be 
more complicated and requires very low latency. Can it be solved with a streaming 
system?

The streaming job built in the previous two chapters is lim-
ited in capability. Every data element that enters the job is 
required to pass through both components in a fixed order: 
the sensor reader and then the vehicle counter. There is no 
conditional routing of data for edge cases or errors that could 
occur in streaming systems. You could visualize the path of 
the data elements in your streaming job as a straight line.

Sensor 
reader

Vehicle 
counter

It might be a bit more 
complicated than the tollbooth 
system, but this shouldn’t be a 

problem. Let’s look into it.

I’d like our fraud detection solution to be 
focused on the stage when people pay for goods/

services with their cards. I expect a lot of transactions to flow 
through the system.  Speed and accuracy is of the utmost 

importance.
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More about the credit card fraud detection 
system
In this chapter, we are going to build a credit card fraud detection system. It will be more 
complicated than the tollbooth problem we had before.

In the past, all of our jobs have executed  
sequentially; this could be a bottleneck  

for us with heavy load. How could we execute  
the fraud detection operations  

more efficiently?

The analyzers apply rules to 
evaluate the risks of the transactions. 

All the risk scores are combined at the end 
as one result. We can start from a few 

simple rules for now.

If I understand the requirements correctly, we want 
a system with multiple rule-based analyzer operators 

that evaluate the transactions and score the risks. At the end 
we will need a classifier that combines all the scores from 

each analyzer and makes a decision. 
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The fraud detection business

Brick and mortar 
locations, online 
businesses, and even 
mobile devices can all 
take credit card 
payments.

The card network routes 
transactions to be paid to 
the correct bank after 
collecting as much 
information as it can to 
help banks make a 
decision to pay for the 
charges. The fraud 
detection system lives 
here to generate risk 
scores.

Banks make a decision to 
allow the transaction to 
go through based on 
information gathered by 
the card network.

The card network sits between the stores and the 
banks. As transactions enter the card network, logic is 

performed to give the paying banks as much information  
as possible. This helps them make the decision to pay  

a transaction or not.
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Streaming isn’t always 
a straight line
We can build the system like the tollbooth system. First, 
the transaction source component is responsible for accept-
ing transaction events from external systems. Then, the 
analyzers are applied one by one, and risk scores are added 
into the events. Finally, a score aggregator makes a final 
decision from the scores.

The solution works, but it is not ideal. New analyzers 
will be added in the future, the list will grow, and the end-
to-end latency will increase. Plus, the job could be harder 
to maintain when there are many analyzers. 

Another option is to build the system like the diagram below. All three analyzers con-
nect to the transaction source and run independently. The score aggregator collects 
results from them and aggregates the scores to make a final decision. In this solution, the 
end-to-end latency won’t increase when more analyzers are added.

Transaction
source

Average ticket 
analyzer

Windowed proximity 
analyzer

Windowed transaction
count analyzer

Score
aggregator

Transaction
source

Average ticket 
analyzer

Windowed proximity 
analyzer

Windowed transaction
count analyzer

Score
aggregator

The first solution was not 
ideal. Every analyzer we added 

increased latency.
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Zoom into the system

1. API gateway accepts 
transactions.

2b. The 
transaction is 
asynchronously 
routed to a 
fraud detection 
job.

3. The streaming job processes the 
transactions, creates a fraud 
score for each transaction, and 
stores them into a database.

4. The fraud score 
datastore holds  
a fraud score for  
each transaction.

5. The 
transaction 
presenter pulls 
the fraud score 
from the 
database and 
presents it to 
the paying bank, 
along with the 
transaction 
itself.

2a. API gateway forwards 
the transactions to 
transaction presenter via 
HTTP.

6. Banks make a 
decision to pay for 
the transaction or 
not based on the 
fraud score.

7. The decisions are 
sent back.

 API 
gateway

transaction
presenter

transaction
source

average  
ticket  

analyzer

windowed
proximity 
analyzer

windowed
txn count 
analyzer

score 
aggregator
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The fraud detection job in detail
Let’s take a deeper look into the fraud detection job and see each component’s 
responsibility.

How do we know if a transaction is potentially fraudulent?

Fraud scores can range from 0–3. A score of 0 means no fraud is 
detected by any analyzer, and a score of 3 means fraud is detected by 
all analyzers. Each analyzer will add a point to the score. We can con-
sider a transaction potentially fraudulent with a score of 2 or greater.

The transaction source pulls events 
as they enter the API gateway to 
the credit card system. It will 
create 3 different instances of the 
same transaction and fan them 
out to the analyzers.

The average ticket 
analyzer looks at the 
amount spent on a 
transaction. If the amount 
falls out of the normal 
spending history of the 
customer, then it will add 1 
to the fraud score.

The windowed proximity analyzer 
looks for transactions from the 
same account in a specified window 
of time. It’s unlikely that someone 
would physically swipe a card at a 
location, then swipe it again 200 
miles away. If it finds this behavior, 
it will add 1 to the fraud score.

The score aggregator waits for a 
small window of time for each 
upstream analyzer and then 
aggregates the total fraud score. 
After this window has expired, it will 
write the score to the database.

The windowed transaction count 
analyzer looks for the transactions 
from the same account in a specified 
window of time. It’s unlikely that 
someone would use the same card 
multiple times in a small window. If it 
sees this behavior, it will add 1 to the 
fraud score.transaction

source

average 
ticket

analyzer

windowed
proximity 
analyzer

windowed
txn count 
analyzer

score 
aggregator

 API 
gateway
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New concepts
In chapter 2, you learned the moving parts in a streaming system, the data sources and 
the operators, and the connections. We also looked at how the underlying engine han-
dles them. These are all very important concepts that we will keep using through the 
whole book.

In this chapter, we are going to look into streaming jobs that have more complicated 
structures. The new diagram looks more complicated than the old straight-line diagram. 
This is correct, but there is nothing to worry about.

Before moving forward, let’s look at a few new concepts we can learn from this new 
diagram:

•	 Upstream and downstream components

•	 Stream fan-out

•	 Stream fan-in

•	 Graph and DAG (directed acyclic graph)

With these new concepts, we can construct more complicated streaming systems to solve 
more general problems. 

transaction
source

average 
ticket

analyzer

windowed
proximity 
analyzer

windowed
txn count 
analyzer

score 
aggregator
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Upstream and downstream components
Let’s start with two new concepts: upstream components and downstream components. 
They are pretty simple and straightforward.

Overall, a streaming job looks like a series of events flowing through components. For 
each component, the component (or components, as we will discuss later) directly in 
front is its upstream component, and the component directly behind is its downstream 
component. Events flow from an upstream component to a downstream component. If 
we look at the diagram of the streaming job we built in the previous chapter, events flow 
from the sensor reader to the vehicle counter. Therefore, the sensor reader is the upstream 
component, and the vehicle counter is the downstream component.

A streaming job

The sensor reader is 
the upstream 
component of the 
vehicle counter.

The vehicle counter is 
the downstream 
component of the 
sensor reader.

Between these two 
components, the sensor 
reader is the upstream 
component, and the 
vehicle counter is the 
downstream component.

Sensor 
reader

Vehicle 
counter
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Stream fan-out and fan-in
Now, let’s look at the new diagram proposed by AJ. It looks quite different from the pre-
vious job overall. The major difference is that one component may have more than one 
upstream or downstream component.

The transaction source component has three downstream components connected to 
it. This is called stream fan-out. Similarly, the score aggregator has three upstream com-
ponents (we can also say that the three analyzers have the same downstream compo-
nent). This is called stream fan-in.

Stream fan-in means 
a component has 
multiple upstream 
components. This is a 
stream fan-in 
between the analyzers 
and the score 
aggregator.

Stream fan-out means a 
component has multiple 
downstream components. 
This is a stream fan-out 
between the transaction 
source and the analyzers. transaction

source

average 
ticket

analyzer

windowed
proximity 
analyzer

windowed
txn count 
analyzer

score 
aggregator

I’m not sure how to read this 
diagram. Does the same event go to 

all three analyzers?
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Graph, directed graph, and DAG
The last three concepts we will cover in this chapter are graph, directed graph, and DAG. 

First of all, a graph is a data structure that consists of a 
set of vertices (or nodes) and edges (also known as connec-
tions or lines) that connect pairs of vertices. Two data 
structures used by developers, tree and list, are examples 
of graphs.

A

DC

E

B

C

D

B A

E

DC

B

A

E

If every edge in a graph has a direction (from one vertex to 
another one), this graph is called a directed graph. The dia-
gram to the right is an example of directed graph with five 
vertices and seven directed edges.

A special type of directed graph 
is a directed acyclic graph, or a 
DAG. A DAG is a directed 
graph that has no directed 
cycles, which means that in 
this type of graph, there is no way to start from a vertex and 
loop back to it following directed edges.

The diagram to the left is a DAG because from any of the 
vertices, no path can be found to loop back to itself. In the 
directed graph diagram, vertices C, D, and E form a cycle; 
hence, this graph is not a DAG. Note that there is another 

cycle on vertex B because it has an edge looping back to itself directly.

Most streaming jobs can be 
presented as DAGs.
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DAG in stream processing systems
DAG is an important data structure in computer science and in stream processing sys-
tems. We won’t jump into too much mathematical detail here, but it is important to 
know that DAG is a common term in the streaming world.

It is convenient to represent how events flow through a system with a directed graph. 
A loop in a directed graph means that events can be looped back and reprocessed in the 
same component again. It needs to be handled very carefully because of the extra com-
plexity and risks. In some cases, loops could be necessary, but they are relatively rare. 
Most stream processing systems don’t have loops; hence, they can be presented as DAGs.

Note that, from this chapter forward, when we draw a job diagram, we are going to draw 
a DAG. It will only include the logical components of the job without the engine objects, 
such as the executors and event dispatchers (unless they are necessary), like in the dia-
gram above, so we can focus on the business logic without worrying about the details in 
the engine layer. Parallelism is not included either because it is not business logic related.
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All new concepts in one page
We have talked about quite a few concepts in this chapter. Let’s put them together in one 
page, so it is easier to distinguish the relationships between them.

Events flow from the transaction source to 
the analyzers. The transaction source is the 
upstream component and the analyzers are 
the downstream components. The 
transaction source has multiple downstream 
components connected to it. This is called 
“stream fan-out.”

Similarly, the score 
aggregator component 
has multiple upstream 
components. This is 
called “stream fan-in.”

In general, a streaming job can be presented as a graph, 
more specifically, a directed acyclic graph (DAG), 
because there are no directed cycles in the directed 
graph. The vertices are the components, and the edges 
are the connections between the components.
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Stream fan-out to the analyzers
It is time to jump into our system now, 
starting from the stream fan-out part. 
The stream fan-out in the fraud detec-
tion system is between the source com-
ponent and the analyzer operators. With 
the Streamwork API, it is straightfor-
ward to link the stream coming from the 
source component to the evaluators. We 
can connect the source and evaluators, 
as in the code below.

  Job job = new Job();
  Stream transactionOut = job.addSource(new TransactionSource());
  Stream evalResults1 = transactionOut.applyOperator(new 
AvgTicketAnalyzer());
  Stream evalResults2 = transactionOut.applyOperator(new 
WindowedProximityAnalyzer());
  Stream evalResults3 = transactionOut.applyOperator(new 
WindowedTransactionAnalyzer());

Basically, multiple operators, in this case the evaluators, can be applied to the same 
transaction stream from the source component. In the runtime, every event emitted 
from the source component will be duplicated three times and sent to the three 
evaluators.

A stream fan-out is one component with 
multiple downstream components.
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Multiple operators are 
applied to the same stream.
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Look inside the engine
The real work happens inside the engine. In the Streamwork engine, when a new opera-
tor is hooked up to a stream, a new queue is created between the operator’s event dis-
patcher and the instance executors of the component that generates the stream. In other 
words, one instance executor can push events into multiple outgoing queues.

The instance executor 
of a component

When a component emits 
a new event, the event is 
duplicated and put into all 
the connected outgoing 
queues by the executor.

The event dispatcher 
of one downstream 
component

Event dispatcher pulls 
events from the 
connected incoming 
queue and routes them 
to the instances.

Pull events from 
the incoming 

queue.

exit

Push events to the 
outgoing queue.

exit
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There is a problem: Efficiency
Now, every evaluator should have a copy of the 
transaction events, and they can apply their 
evaluation logic. However, this solution is not 
very efficient.

Each event is a transaction record. It con-
tains a lot of the information about the trans
action, such as merchandise id, transaction id, 
transaction time, amount, user account, merchandise catego-
ries, customer location, and so on. As a result, events are relatively large 
in size:

class TransactionEvent extends Event {
  long transactionId;
  float amount;
  Date transactionTime;
  long merchandiseId;
  long userAccount;
  ……
}

In the current solution, every event is duplicated multiple times because they are pushed 
to different queues.  Because of the different queues, different analyzers are able to pro-
cess each event asynchronously. These fat events are transferred through the network 
and loaded and handled by the analyzers. In addition, some analyzers don’t need or can’t 
process some of the events, but these events are still transferred and processed. As a 
result, the memory and network resource usage are not efficient and can be improved, 
which could be important when event traffic is high.

The memory usage seems to be 
too high. How can I improve it to be 

more efficient?
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Stream fan-out with different streams 
In stream fan-out, different outgoing queues don’t need to be the same as each other. The 
word different has two meanings here:

•	 An emitted event could be pushed into some outgoing queues but skip others.

•	 Furthermore, events in different outgoing queues toward different downstream 
components could have different data structures.

As a result, only the necessary events with necessary fields are sent to each evaluator.

In the first version, the 
streams have the same 
set of events with the 
same data structure.

In the second version, 
the streams can be 
different from each 
other (have different 
event data structure 
and different sets of 
events).
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The two DAGs look the same, but the 
streams are different.
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Look inside the engine again
We have learned that one component executor can have multiple outgoing queues. 
Previously, the executor just pushed the same event to all the outgoing queues connected 
to the event dispatchers of the downstream components. Now, to support multiple 
streams, the executor needs to take the events emitted from each component and puts 
them into the correct outgoing queues.

The component object provides this information via channels. Different events are 
emitted into different channels, and the downstream components can choose which 
channel to receive events from.

Source executor

Source

In the first version, all the 
queues have the same 
set of events with the 
same data structure. Each event dispatcher 

connects to one 
downstream component.

Each outgoing queue can 
receive events from any 
output channel of the 
source object.

In the second version, the 
output stream of the source 
object has multiple output 
channels. Each channel has 
different sets of events and 
the event data structure 
can also be different in 
different channels.

This multi-channel fan-out gives us more 
flexibility. With more flexibility, we have more 
options to tune the job to make it more 
efficient.

Source executor

Source
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Communication between the components  
via channels
To support this new type of stream fan-out, the component and the executor need to be 
updated:

•	 The component needs to be able to emit events into different channels.

•	 The executor needs to take events from each channel and push them into the 
right outgoing queues.

•	 The last piece is that the downstream component needs to be able to select a 
specific channel when connecting to it via applyOperator(). 

When a component is added into 
the job (apply to the output stream 
of its upstream component), it can 
select a specific channel and 
register to it, for example:

"location_related"

The executor processes the channels 
one by one, pushing the events in 
each channel to the outgoing queues 
that are registered to the channel.

The output of the component was a 
list of events before. Now it is a map 
of channel names to a list of events:

default: [……]
amount_only: [……]
location_related: [……]

Push events to the 
outgoing queue.

exit

Execute 
component logic.
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Multiple channels
With multichannel support, the fan-out in the 
fraud detection system can be modified to send 
only necessary fields in events to the evalua-
tors. Firstly, in the TransactionSource 
class, channel information can be specified 
when events are emitted. Note that the same 
incoming event can be converted into differ-
ent events in different channels.

eventCollector.add(new DefaultEvent(transactionEvent));
eventCollector.add("location _ based",
                   new LocationalEvent(transactionEvent);
 

Then, when an evaluator is added into the streaming job via the applyOperator() 
function, a channel can be specified first.

Job job = new Job();
Stream transactionOut = job.addSource(new TransactionSource());

Stream evalScores1 = transactionOut
    .applyOperator(new AvgTicketAnalyzer());
Stream evalScores2 = transactionOut
    .selectChannel("location _ based")
    .applyOperator(new WindowedProximityAnalyzer());
Stream evalScores3 = transactionOut
    .applyOperator(new WindowedTransactionAnalyzer());
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analyzer
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score 
aggregatorThe event is emitted into 

the default channel.

Choose another channel to 
push events into.

The events in this channel have 
different data structures.

A default channel is used when no channel 
is selected to apply the operator.

A specific channel is 
selected to apply 
the operator.
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Stream fan-in to the score aggregator
The evaluators receive transaction 
events and perform their own evalua-
tions. The output of each evaluator is a 
risk score for each transaction. In our 
system, the risk scores of each trans
action are sent to the score aggregator 
component to make the decision. If 
fraud is detected, an alert is written into 
a fraud transaction database.

You can see from the diagram that 
the score aggregator operator takes input 
from multiple upstream components—
the evaluators. You can also think of it 
in a different way: the output streams 
from the evaluators are merged, and the events in all of them are sent to the score aggre-
gator operator in the same way. This is a stream fan-in.

One thing worth mentioning is that, in the score aggregator operator, events from dif-
ferent streams are treated in the same way. Another case is that the events in different 
incoming streams could have different data and need to be used differently. This second 
case is a more complicated stream fan-in that could be the focus of a full chapter. At the 
moment, let’s focus only on the simple case.

Stream evalScores1 = ……
Stream evalScores2 = ……
Stream evalScores3 = ……

Operator aggregator = new ScoreAggregator(
    "aggregator", 2, new GroupByTransactionId());
Streams.of(evalScores1, evalScores2, evalScores3)
    .applyOperator(aggregator);

Stream fan-in
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Multiple streams 
are merged into one 
Streams object.

The ScoreAggregator operator is applied on the Streams 
object. Note that GroupByTransactionId is a subclass of 
FieldsGrouping to make sure the scores for a specific 
transaction are sent to the same aggregator instance.
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Stream fan-in in the engine
Stream fan-in is straightforward in the Streamwork engine. The incoming queue of a 
component (connected to its event dispatcher) can be used by multiple upstream com-
ponents. When an event is emitted by any of the upstream components (in fact, by an 
instance of the component), the event will be put in the queue. The downstream compo-
nent pulls events from the queue and processes them. It doesn’t distinguish between who 
pushed the events into the queue.

As we discussed before, the queue 
decouples the upstream and downstream 
components.

The events in the queue 
are then consumed by the 
downstream component.

The events emitted from every 
upstream component are pushed 
into the same outgoing queue.

Component executor

Component

Component executor

Component

Component executor

Component

Component executor

Component
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A brief introduction to another 
stream fan-in: Join

We mentioned that, in addition to the stream fan-in used in the exam-
ple job, there is a more complicated type of fan-in. We will present a 
brief introduction to it, so you can have a better idea of all types of 
fan-ins and fan-outs.

In the simple stream fan-in, all incoming events have the same data structure and are 
treated the same way. In other words, the incoming streams are the same. What if the 
incoming streams are different from each other and need to be 
combined together? If you have ever used any databases, you 
should have some idea of an operation on multiple tables: join. If 
you don’t know it, or you have forgotten it (we all know how reli-
able human memory is), no need to worry—it is not a 
prerequisite.

In databases, the join operation is used to 
combine columns from multiple tables. For 
example, a table of user-id and name and 
another table of user-id and phone-num-
ber can be joined to create a new table of 
user-id, name and phone-number 
by matching the user-id column in 
the two original tables. In the stream-
ing world, the basic purpose of the 
join operation is similar: joining 
fields from multiple data sources.

However, relative to database 
tables, streams are much more 
dynamic. Events are accepted and processed continuously, 
and matching fields from multiple continuous data sources 
requires a lot more considerations. We are going to stop here 
on the basic concept of join and leave further exploration 
of this topic to its own chapter.

{
  user_id: 001,
  name: Tim,
  phone_number: 12345
}

{
  user_id: 001,
  name: Tim
}

{
  user_id: 001,
  phone_number: 12345
}

Join operator

Well, this is great, but what if I 
have to merge events of a different 

type?

In your case this a more 
complicated type of stream fan-in. 

You would use what streaming people 
call a Join.
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Look at the whole system
Now that we have discussed stream fan-out and fan-in one by one in the previous sec-
tions, let’s put them together and zoom out to take another look at the whole system. 
From a high level, the job can be represented as the graph below; sometimes we call it 
the logical plan. It represents the logical structure (components and their connections) 
of the job.

In the real world, fraud detection systems will evolve continuously, and new evalua-
tors will be introduced from time to time. With the Streamwork framework, or other 
stream processing frameworks, adding, removing, and replacing evaluators is pretty 
simple and straightforward.

Each downstream component can be 
hooked up to a specific stream 
according to the data it needs.

The transaction source component 
accepts transaction events from 
external systems. The events are 
preprocessed and emitted into 
multiple output streams.

Each evaluator 
component evaluates 
the risk of the 
transaction and 
creates a fraud score.

The aggregator makes 
the decision and sends 
it to external systems.

The scores from all the 
evaluators are sent into 
the aggregator to 
make the final decision.
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Graph and streaming jobs
With the support of stream fan-out and fan-in, now we can build streaming systems in 
more complicated and general graph type structures. This is a very important step for-
ward because with this new structure, we can cover more real-world problems.

Here are the DAGs of two example streaming systems. Can you try to imagine what 
kind of systems they might be?
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The example systems
The truth is, these graphs can be so 
many things! Here are potential answers 
for the two diagrams.

The first diagram could be a simple 
traffic monitoring system. The events 
collected by the traffic sensors are sent 
to three core processors: an accident 
detector, a congestion detector, and a 
junction optimizer. The congestion 
detector has a location-based aggrega-
tor as a preprocessor.

Traffic
sensor

Accident
detector

Location-based 
aggregator

Junction
optimizer

Congestion
detector

Sensor reader
version 1

Sensor reader
version 2

Sensor reader
version 3

Sensor reader
version 4

Adapter

Fault
detector

The second diagram could be a fault detection system that processes events from sensor 
readers in multiple versions. The events generated from the first two versions are not 
compatible with the detector; hence, an adapter is needed for them. In the system, all the 
sensor readers can work together seamlessly, and it is easy to add new versions or depre-
cate old versions.

After all, stream jobs are not very complicated. The example systems are significantly 
simplified compared to the real-world systems. Nevertheless, hopefully you have a better 
idea of what streaming systems can do now. In their simplest form, streaming jobs are 
components and their connections. Once a streaming job is set up and running, events 
flow through the components along the connections forever. 
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Summary
In this chapter, we moved forward from the list type system structure we discussed in 
previous chapters to a more general type of system structure: the graph. Because events 
flow through systems from the sources to the operators, in most cases a streaming job 
can be presented as a directed acyclic graph (DAG). Most jobs in the real world have 
graph architecture; hence, this is a critical step.

Different from the components in the list type system structure, in a job graph, a com-
ponent can link to multiple upstream components and downstream components. These 
types of connections are called stream fan-in and fan-out. The streams coming into a 
component or going out of it could have the same types of events or different types.

In addition, we also looked at the Streamwork framework a little bit to see how the 
engine handles the connections. Hopefully, this will be helpful for your understanding 
of how streaming systems work in general.
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Exercises
1.	 Can you add a new evaluator to the fraud detection job?

2.	 Currently, each evaluator takes a transaction event from the transaction source 
component and creates a score. Now two evaluators have the same type of 
calculation at beginning of their evaluation. Could you change the job for this 
case? The result will look like the graph below:
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In this chapter

•	 introducing delivery semantics and their impact

•	 at-most-once delivery semantic

•	 at-least-once delivery semantic

•	 exactly-once delivery semantic

Computers are pretty good at performing accurate calculations. However, 
when computers work together in a distributed system, like many stream­
ing systems, accuracy becomes a little bit more (I mean, a lot more) compli­
cated. Sometimes, we may not want 100% accuracy because other more 
important requirements need to be met. “Why would we want wrong 
answers?” you might ask. This is a great question, and it is the one that we 
need to ask when designing a streaming system. In this chapter, we are 
going to discuss an important topic related to accuracy in streaming sys­
tems: delivery semantics.

5Delivery semantics 

There’s never enough time to do it right, but there’s 

always enough time to do it over.

—Jack Bergman
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The latency requirement of the fraud 
detection system
In the previous chapter, the 
team built a credit card fraud 
detection system which can 
make a decision within 20 milli­
seconds for each transaction and 
store the result in a database. 
Now, let’s ask an important 
question when building any dis­
tributed system: what if any fail­
ure happens?
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Sounds good… 
Wait. Sacrifice 

accuracy?!! What do you 
mean?

We will need to 
account for failure 

handling by sacrificing 
accuracy to meet the 

requirement when 
things go wrong.

Low latency is critical for the system. Looks 
like our system can finish the process under 20 

milliseconds for each transaction. Everything looks 
good, right? 
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Revisit the fraud detection job
We are going to use the fraud detection system from the previous chapter as our example 
in this chapter to discuss the topic of delivery semantics. So let’s look at the system and 
the fraud detection job briefly to refresh your memory first.

The fraud detection job has multiple analyzers working in parallel to process the trans­
actions that enter the card network. The fraud scores from these analyzers are sent to an 
aggregator to calculate the final results for each transaction, and the results are written 
to the database for the transaction presenter.

The 20-millisecond latency threshold is critical. If the decision is not made in time, 
the transaction presenter won’t be able to provide the answer for the transaction to the 
bank, which would be bad. Ideally, we would like the job to run smoothly and meet the 
latency requirement all the time. But, you know, stuff happens. 

1. Events enter the job at the 

transaction source and they are 

fanned out to each component. 2. Events  
are fanned  out to each downstream operator.

3. Scores are fanned in to the 
final score aggregator to calculate the final result.
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Don’t panic! In the next few pages we will look at solutions with these types of results.

About accuracy
We make lots of tradeoffs in distributed systems. A challenge in any streaming system is 
to reliably process events. Streaming frameworks can help keep the job running reliably 
as often as possible, but you need to know what you really need. We are used to seeing 
accurate results with computers; hence, it is important to understand that accuracy is 
not absolute in streaming systems. When necessary, it might need to be sacrificed.

So, it means that the results could 
be inaccurate? 

Yeah, results will be 
accurate when the 

system runs normally. 
However, when some part in 

the system is not reliable, we 
would choose low latency over 

accuracy and have 
inaccurate partial results 

instead.

Many things can go wrong in the 
fraud detection system, such as 
network issues or instances of 
running out of resources. We 
need to make sure the system 
runs reliably.
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Partial result
A partial result is a result of incomplete data; hence, we can’t guarantee its accuracy. The 
following figure is an example of partial result when the average ticket analyzer has tem­
porary issues.

1. Three transactions [T1, T2, T3] 

enter the system and they are 

fanned out to each component.

2. The windowed proximity analyzer 
and the windowed transaction count 
analyzer processed all three 
transactions and sent the scores out 
successfully.

3. However, the average ticket analyzer has some problem when processing the transaction T2. Only the scores of transaction T1 and T3 are processed successfully and sent to the score aggregator.

4. The score aggregator received scores 
of T1 and T3 from all the analyzers but is 
missing one score of T2. Since it doesn’t 
want to miss the deadline, it aggregates 
the scores based on the existing data 
and stores the results to database. The 
results of T1 and T3 are accurate but the 
result of T2 is a partial result and the 
accuracy is not guaranteed.

It’s common in streaming 
systems to make tradeoffs.
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I see. A potentially 
inaccurate partial result of 

T2 is more desirable than waiting 
to have accurate results and 
missing the 20 milliseconds 

deadline.
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A new streaming job to monitor  
system usage
Now that we have seen the requirements of the fraud detection job, to better understand 
different delivery semantics, we want to introduce another job that has different require­
ments to compare. The fraud detection system has been a hit in the credit card process­
ing business. With the speed of system operations, other credit card companies are 
becoming interested in this idea, and with interest increasing, the team decided to add 
another streaming job into the system to help monitor system usage. The job tracks key 
information, such as how many transactions have been processed.

Every credit card 

transaction that 

enters the system 

is fanned out to 

each streaming job.
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The system usage job 
gives a real-time view 
of the usage of the 
whole system. It helps 
assess the current load 
of the system at any 
point in time.

Why couldn’t we just 
share the transaction source 

across the two jobs? Will it be more 
efficient?

The requirements are 
different between the two jobs. 
Plus, the jobs could be easier to 

manage with the isolation. Therefore, 
we have decided it’s better not to 

share.
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class SystemUsageAnalyzer extends Operator {
  private int transactionCount = 0;
  private int fraudTransactionCount = 0;

  public void apply(Event event, EventCollector collector) {
    String id = ((TransactionEvent)event).getTransactionId();
    transactionCount++;

    Thread.sleep(20);
    
    

    boolean fraud = fraudStore.getItem(id);

    if (fraud) {
      fraudTransactionCount++;
    }

    collector.emit(new UsageEvent(
    transactionCount, fraudTransactionCount));
  }
}

The new system usage job
The new system usage job is used internally to monitor the current load of the system. 
We can start with two critical numbers that we are interested in first:

•	 How many transactions have been processed? This number is important for us to 
understand the trend of the overall amount of data the fraud detection job is 
processing.

•	 How many suspicious transactions have been detected? This number could be 
helpful for us to understand the number of new records created in the result 
database.

The counting logic is in the SystemUsageAnalyzer operator:

Count the 
transaction.

Pause for 20 milliseconds for 

the fraud detection job to 

finish its process.

Read the detection result of the 

transaction from database. This 

operation may fail if the database is not 

available, and an exception will be thrown.

Count the fraud transaction if 

the result is true.

The operator looks very simple:

•	 For every transaction, the value of transactionCount increases by one.

•	 If the transaction is a detected fraud transaction, the value of 
fraudTransactionCount  increases by one.

However, the getItem() call in the function could fail. How the job behaves when fail­
ures happen is a key difference between different delivery semantics.
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The requirements of the new system  
usage job
Before worrying about the failures, we have a few more things to talk about. First, 
let’s look at the requirements of the job. As an internal tool, the latency and accuracy 
requirements can be quite different from the fraud detection job:

•	 Latency—The 20-millisecond latency requirement of the fraud detection job is 
not necessary in the system usage job, since the results are not used by the 
presenter service to generate decisions for the banks. We humans can’t read the 
results that quickly anyway. Moreover, a small delay when something goes wrong 
could be totally acceptable.

•	 Accuracy—On the other hand, accurate results could be important for us to 
make the right decision.

We will walk you through the most common delivery semantics to get you started in 
your stream-processing journey. Along the way we will discuss the different ways you can 
use streaming systems to guarantee how transactions will be processed and why you 
would want to use them.

In the system usage job, accuracy is 
more important. We need to configure the 

system to give us the accurate results even if 
something goes wrong.

Is there a way to configure 
accuracy settings in our 

streaming engine?

Yes, there is a critical configuration 
widely supported by most engines. It’s 

known as delivery semantics or delivery 
guarantees.
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New concepts: (The number of) times 
delivered and times processed
To understand what delivery semantics really means, the concepts of times processed and 
times delivered will be very helpful:

•	 Times processed can refer to the number of times an event was processed by a 
component.

•	 Times delivered can refer to the number of times the result was generated by a 
component.

The two numbers are the same in most cases, but not always. For example, in the flow 
chart of the logic in the SystemUsageAnalyzer operator below, it is possible that the 
get detection result step can fail if the database is having issues. When the step fails, the 
event is processed once (but not successfully), and no result is generated. As a result, the 
times processed would be 1, and the times delivered would be 0. You may also consider 
times delivered as times successfully processed.

1. This step can fail sometimes. When failure happens, the 
event is processed, but not 
successfully, and no result is generated. As a result, the 
times processed and times 
delivered will be different.

2. The result is generated and 

emitted only when the event is 

successfully processed.

Get detection
result.

start

end

Count fraudulent
transactions.

Count total
transactions.

Emit results.
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New concept: Delivery semantics
Here comes the key topic of this chapter: delivery semantics, also known as delivery guar-
antees or delivery assurances. It is a very important concept to understand for streaming 
jobs before we move on to more advanced topics.

Delivery semantics concerns how streaming engines will guarantee the delivery (or 
successful processing) of events in your streaming jobs. There are three main buckets of 
delivery semantics to choose from. Let’s introduce them briefly here and look at them 
one by one in more detail later.

•	 At-most-once—Streaming jobs guarantee that every event will be processed no 
more than one time, with no guarantees of being successfully processed at all.

•	 At-least-once—Streaming jobs guarantee that every event will be successfully 
processed at least one time with no guarantees about the number of times it is 
processed.

•	 Exactly-once—Streaming jobs guarantee that every event will be successfully 
processed once and only once (at least it looks this way). In some frameworks, it 
is also called effectively-once. If you feel that this is too good to be true because 
exactly-once is extremely hard to achieve in distributed systems, or the two terms 
seem to be controversial, you are definitely not alone. We will talk about what 
exactly-once really is later in its own section.

Exactly-once sounds ideal. Why 
would anyone ever want to use 

at-most-once or at-least-once?

Good question! No doubt that 
exactly-once sounds great. However, the 

convenience comes with costs and there are 
other considerations. It is very important for 
developers to know what they really need. 

Now, let’s discuss.
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Choosing the right semantics
You may ask whether it is true that exactly-once is the go-to semantic for everything. 
The advantage is pretty obvious: the results are guaranteed to be accurate, and the cor­
rect answer is better than an incorrect answer.

With exactly-once, the streaming engine will do everything for you and there is noth­
ing to worry about. What are the other two options for? Why do we need to learn about 
them? The fact is, all of them are useful because different streaming systems have differ­
ent requirements.

Here is a simple table for the tradeoffs to begin with. We will revisit the table later 
after more discussion.

Let’s continue to learn how the delivery semantics are actually handled in streaming 
systems. Then, you should be able to understand the tradeoffs better. Note that in the 
real world, each framework could have its own architecture and handle delivery seman­
tics very differently. We will try to explain in a framework agnostic manner.

Delivery semantics At-most-once At-least-once Exactly-once
Accuracy •	 No accuracy 

guarantee because 
of missing events

•	 No accuracy 
guarantee because 
of duplicated events

•	 (Looks like) accurate 
results are guaranteed

Latency (when 
errors happen)

•	 Tolerant to failures; 
no delay when errors 
happen

•	 Sensitive to failures; 
potential delay when 
errors happen

•	 Sensitive to failures; 
potential delay when 
errors happen

Complexity •	 Very simple •	 Intermediate 
(depends on the 
implementation)

•	 Complex

We will choose at-most-once for 
the fraud detection job because we 

need to have low process latency, and 
exactly-once for the system usage job 

to have better accuracy.
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At-most-once
Let’s start from the simplest semantic: at-most-once. Inside the jobs with this semantic, 
events are not tracked. Engines will do their best to process each event successfully, but 
if any error occurs along the way, the engines will forget the events and carry on process­
ing others. The diagram below shows how events are handled in the Streamwork engine 
for at-most-once jobs.

Since the engines don’t track events, the whole job can run very 
efficiently without much overhead. And since the job will just 
continue running without the need of recovering from the 
issues, the latency and higher throughput won’t be affected by 
the errors. In addition, the job will also be easier to maintain 
because of the simplicity. On the other hand, the effect of losing 
events when the system is having issues is that the results could 
be temporarily inaccurate.

The executors and event dispatchers blindly transfer 
events to the downstream processes. By this we 
mean that it does not keep a ledger anywhere of 
what goes where. They just pick up and move events 
as fast as they can. 

The executors and event dispatchers blindly transfer 
events to the downstream processes. By this we 
mean that it does not keep a ledger anywhere of 
what goes where. They just pick up and move events 
as fast as they can. 

Instance executor

Instance
Event

dispatcher

Instance executor

Instance

It might be hard for some people to 
believe, but many real-life systems would 

accept the temporarily inaccurate results to 
keep them simple.
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The fraud detection job
Let’s look back at the fraud detection job 
with the at-most-once semantic. The fraud 
detection job is responsible for adding up 
fraud scores on each transaction that enters 
the card network, and it must generate the 
results within 20 milliseconds.

The good
With the at-most-once guarantee, the system is simpler and processes transactions with 
lower latency. When something goes wrong in the system, such as a transaction failing 
to process or transport, or any instance is temporarily unavailable, the affected events 
will simply be dropped and the score aggregator will just process with the available data, 
so the critical latency requirement is met.

Low resource and maintenance costs is the other main motivation to choose the at-most-
once semantic. For example, if you have a huge amount of data to process in real time with 
limited resources, the at-most-once semantic could be worth your consideration.

The bad
Now, it is time to talked about the catch: inaccuracy. It is definitely an important factor 
when choosing the at-most-once semantic. At-most-once is suitable for the cases in 
which temporary inaccuracy is acceptable. It is important to ask yourself this question 
when you consider this option: what is the impact when the results are inaccurate 
temporarily?

The hope
If you want the advantages of at-most-once as well as accurate results, don’t lose hope 
yet. Although it might be too much to expect everything at the same time, there are still 
a few things we can do to overcome this limitation (to some extent). We will talk about 
these practical techniques at the end of this chapter, but for now, let’s move on and look 
at the other two delivery semantics.

transaction
source

average 
ticket

analyzer

windowed
txn count 
analyzer

score 
aggregator

windowed
proximity 
analyzer
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At-least-once
No matter how convenient the at-most-once semantic is, the flaw is obvious: there is no  
guarantee that each event will  be reliably processed. This is just not acceptable in many 
cases. Another flaw is that, since the events have been dropped without any trace, there 
is not much we can do to improve the accuracy.

Next comes the next delivery semantic—at-least-once—which can be helpful for 
overcoming the flaws discussed previously. With at-least-once, the streaming engines 
will guarantee that events will be processed at least one time. A side effect of at-least-
once is that events may be processed more than one time. The diagram below shows how 
events are handled in the Streamwork engine for at-least-once jobs.

Note that tracking events and making sure each of them is successfully processed 
might sound easy, but it’s not a trivial task in distributed systems. We will look into it in 
the next few pages.

The executors and event dispatchers transfer events 
to the downstream processes, and the events are 
tracked. If an event is lost in the job, it will be resent.

If any of these events fail to be transferred or 
processed, the engine will replay them from the 
source. As the result, it is possible for these events to 
be processed more than once. 

Instance executor

Instance
Event

dispatcher

Instance executor

Instance

That sounds pretty 
straightforward.

Whoa buddy... This is not 
a trivial task to track events 
in a job running on multiple 

computers.
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At-least-once with acknowledging
A typical approach to support the at-least-once delivery semantic is that each compo­
nent within a streaming job acknowledges that it has successfully processed an event 
or experienced a failure. Streaming frameworks usually supply a tracking mechanism 
for you with a new process acknowledger. This acknowledger is responsible for tracking 
the current and completed processes for each event. When all processes are completed, 
and there is no current process left for an event, it will report a success or fail message 
back to the data source. Let’s look at our system usage job running with the at-least-
once semantic below.

After the source component emits an event, it will keep it in a buffer first. After it receives 
a success message from the acknowledger, it will remove the event from the buffer, since 
the event has been successfully processed. If the source component receives a fail mes­
sage for the event, it will replay that event by emitting it into the job again.

The acknowledger

Some of you may ask: why don’t we send the 
acknowledgment message back to the source 
directly? The main reason is related to the single 
responsibility principle. The source is responsi­
ble for bridging the streaming job with the out­
side world, and we would like to keep it simple.The transaction source will 

emit the event into the 

streaming job and keep track 

of its progress throughout the 

job.

As events pass both of the 
components in the job, 
each one will need to 
acknowledge that actions 
were taken (either 
successfully or not) on 
each event.

The acknowledger will listen for 
either a successful or failed 
message from the downstream 
components. Once received it will 
pass them back to the data 
source. If successful, the data 
source will know to discard the 
event; if failed, the data source 
will replay the event.

transaction
source

system
usage

analyzer

usage
writer

Acknowledger
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Track events
Let’s get closer and see how events are tracked with an example. The engine will wrap the 
core event in some metadata as it leaves the data source. One of these pieces of meta-data 
is an event id that is used for tracking the event through the job. Components would 
report to the acknowledger after the process is completed.

Note that the downstream components are included in acknowledgment data, so the 
acknowledger knows that it needs to wait for  the tracking data from all the downstream 
components before marking the process fully processed.

1. The data source gets a transaction and emits it 
out with an assigned id 101. It will hold it ready to 
resend until all components have successfully 
acknowledged the event has been processed. 
The acknowledgment might look like:
{
  Event id: 101,
  Result: successfully processed,
  Component: transaction source,
  Downstream components: [
    system usage analyzer
  ]
}

2. The analyzer would send an 
acknowledgment on the id once 
processing has completed on the 
received event.
{
  Event id: 101,
  Result: successfully processed,
  Component: system usage analyzer,
  Downstream components: [
    usage writer
  ]
}

3. The usage writer would send another 
acknowledgment on the id once the processing 
has completed.
{
  Event id: 101,
  Result: successfully processed,
  Component: usage writer
}

4. The acknowledger 
receives all the needed 
acknowledgments (from 
all the “downstream 
components”) and 
notifies the transaction 
source that the event 
with id 101 has been 
fully processed.

transaction
source

system
usage

analyzer

usage
writer

Acknowledger
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Handle event processing failures
In another case, if the event fails to process in any component, the acknowledger will 
notify the source component to resend. 

1. The data source gets a transaction and emits it out with an assigned  
id 101. It will hold it ready to resend until all components have 
successfully acknowledged the event has been processed. When a 
failure is received, the event will be resent with a new assigned event id. 
The acknowledgment might look like:
{
  Event id: 101,
  Result: successfully processed,
  Component: transaction source,
  Downstream components: [
    system usage analyzer
  ]
}

2. The analyzer would send an 
acknowledgment on the id once 
processing has completed on the 
received event.
{
  Event id: 101,
  Result: successfully processed,
  Component: system usage analyzer,
  Downstream components: [
    usage writer
  ]
}

3. The usage writer has an issue to process the event  
and it would send another acknowledgment on the id once 
the processing has failed. The acknowledgment might  
look like:
{
  Event id: 101,
  Result: process failed,
  Component: usage writer
}

4. The acknowledger 
receives all the 
acknowledgments and 
notifies the transaction 
source that the event 
with id 101 couldn’t be 
fully processed. A retry 
is needed.

transaction
source

system
usage

analyzer

usage
writer

Acknowledger
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Track early out events
The last case we need to take a look at is when not all events go through all the compo­
nents. Some events may finish their journey earlier. This is why the downstream compo­
nent information in the acknowledgment message is important. For example, if the 
transaction is not valid and won’t need to be written to storage, the system usage ana­
lyzer will be the last stop of the event, and the process will be completed there.

1. The data source gets a transaction and emits it out with an assigned  
id 101. It will hold it ready to resend until all components have 
successfully acknowledged the event has been processed. The 
acknowledgment might look like:
{
  Event id: 101,
  Result: successfully processed,
  Component: transaction source,
  Downstream components: [
    system usage analyzer
  ]
}

2. The analyzer would send an acknowledgment on the id 
once processing has completed on the received event. Note 
that if this is the last component for the event, there is no 
downstream component in the acknowledgment data. The 
acknowledgment might look like:
{
  Event id: 101,
  Result: successfully processed,
  Component: system usage analyzer
}

4. The acknowledger 
receives all the 
acknowledgments and 
notifies the transaction 
source that the event 
with id 101 has been 
fully processed.

3. The usage writer 

component is not in the 

downstream component list; 

hence, the acknowledger 

won’t wait for the 

acknowledgment from it.

transaction
source

system
usage

analyzer

usage
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Acknowledger
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Acknowledging code in components
If you are wondering how the engine will know how a component will pass or fail an 
event, that is good! Below we have snippets of code that will be implemented in the 
SystemUsageAnalyzer and the UsageWriter components.

class SystemUsageAnalyzer extends Operator {
  public void apply(Event event, EventCollector collector) {
    if (isValidEvent(event.data)) {
      if (analyze(event.data) == SUCCESSFUL) {
        collector.emit(event);

        collector.ack(event.id);    
      } else {
        //signal this event as failure
        collector.fail(event.id);
      }
    } else {
      // signal this event as successful
      collector.ack(event.id);
    }
  }
}

class UsageWriter extends Operator {
  public void apply(Event event, EventCollector collector) {
    if (database.write(event) == SUCCESSFUL) {
      //signal this event as successful
      collector.ack(event.id);
    } else {
      // signal this event as unsuccessful
      collector.fail(event.id);
    }
  }
}

An acknowledgment will be sent out 

when an event is emitted to 

acknowledge the event as successful.

Analyzing failed. Acknowledge this 

event as unsuccessful.

The event should be skipped. 

Acknowledge this event as 

successful, so the source component 

won’t replay it.

No need to emit the event out. 

Manually acknowledge this event as 

successful.

The database is having issues writing. 

Acknowledge this event as 

unsuccessful.
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New concept: Checkpointing
Acknowledging works fine for the at-least-once semantic, but it has some drawbacks.

•	 The acknowledgment logic (aka code change) is needed.

•	 The order of events processing could be different from the input, which could 
cause issues. For example, if we have three events [A, B, C] to process, and the 
processing job has a failure when processing event A, another copy of event A 
will be replayed later by the source, and eventually four events, [A (failed), B, C, 
A], are emitted into the job, and event A is successfully processed after B and C.

Luckily, there is another option to support the at-least-once semantic (with tradeoffs, like 
everything else in the distributed systems): checkpointing. It is an important technique in 
streaming systems to achieve fault tolerance (i.e., the system continues operating properly 
after the failures). Because there are many pieces involved, it is a little messy to explain 
checkpointing in detail in streaming systems. So let’s try a different way. Although the con­
cept of checkpointing sounds technical, it is, in fact, very likely that you have experienced it 
in real life if you have ever played video games. If you haven’t played any, that’s OK. You can 
also think of any text editor software (or maybe you want to try a video game now).

Now, let’s play an adventure game fighting all kinds of zombies and saving the world. 
It is not very common that you will complete the game nonstop from the beginning to 
the end, unless you are like a superhero and never fail. Most of us will fail occasionally 
(or more than occasionally). Hopefully, you have saved your progress so you can reload 
the game and resume where you were instead of starting over from the very beginning. 
In some games, the progress might be saved automatically at critical points. Now, imag­
ine that you live in the universe of the game. Your time should be continuous without 
interruption, even though in real life you have been rolled back a few (or many) times to 
earlier states. The operation of saving a game is very much like checkpointing.

Time in
real life

Time in the 
game universe

1. Save.

2. Load a saved game when something  goes wrong.

The saved data can be used to restore game progress at a later time.

Game Game
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New concept: State
If you play video games, you know how important saved data is. I can’t imagine how I 
can finish any game (or any work) without that functionality. A more formal definition 
of checkpoint is a piece of data, typically persisted in storage, that can be used by an 
instance to restore to a previous state. We will now cover another related concept: state.

Let’s go back to the zombie universe and see what data would be needed to restore and 
continue the adventure. The data could be very different from game to game, but we 
should be able to imagine that the following data will be needed in the saved games:

•	 The current score and levels of skills

•	 The equipment you have

•	 The tasks that have been finished

One key property that makes the data important is that it changes along with the game-
play. The data that doesn’t change when you are working hard to save the world, such as 
the map and the appearance of the zombies, doesn’t need to be included in the saved 
games.

Now, let’s go back to the definition of state in streaming systems: the internal data 
inside each instance that changes when events are processed. For example, in the system 
usage job, each instance of the system usage analyzer keeps track of the count of trans­
actions it has processed. This count changes when a new transaction is processed, and it 
is one piece of information in the state. When the instance is restarted, the count needs 
to be recovered.

While the concepts of checkpointing and state are not complicated, we need to under­
stand that checkpointing is not a trivial task in distributed systems like in streaming 
systems. There could be hundreds or thousands of instances working together to process 
events at the same time. It is the engine’s responsibility to manage the checkpointing of 
all the instances and make sure they are all synchronized. We will leave it here and come 
back to this topic later in chapter 10.
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Checkpointing in the system usage job  
for the at-least-once semantic
Before introducing checkpointing for at-least-once, we need to introduce a useful com­
ponent between the API gateway and the system usage job: an event log. Note that the 
term is used for the purposes of this book and is not widely used, but it shouldn’t be hard 
to get. An event log is a queue of events in which each event is tracked with an offset (or 
a timestamp). The reader (or consumer) can jump to a specific offset and start loading 
data from there. In real life, events might be organized in multiple partitions, and offsets 
are managed independently in each partition, but let’s keep things simple here and 
assume there is only one offset and one transaction source instance.

With an event log in front of the transaction source component, every minute (or 
other interval) the source instance creates a checkpoint with the current state—the cur­
rent offset it is working on. When the job is restarted, the engine will identify the right 
offset for the instance to jump to (a rollback) and start processing events from that point. 
Note that the events processed by the instance from the checkpointing time to the restart 
time will be processed again, but it is OK under the at-least-once semantic.

transaction
source

system
usage

analyzer

usage
writer

API
gateway

checkpoints
storage

The event log allows the job to 
replay transactions starting 
from a past time.

1. Every minute (or other interval), each instance of the transaction source component creates a new checkpoint with the offset it is working on and saves it in the storage. The checkpoint might look like:
{
  Event offset: 100}

2. When the job restarts, a 

roll back will be triggered. 

The engine identifies the 

correct offsets for the 

transaction source instances 

to jump to. The instances will 

start loading events from 

the offsets and keep 

processing.
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Checkpointing and state manipulation 
functions
Checkpointing is very powerful. Many things are happening when a job is running with 
checkpointing enabled. A few major points include:

•	 Periodically, each source instance needs to create the checkpoint with their 
current states.

•	 The checkpoints need be saved into a (hopefully fault-tolerant) storage system.

•	 The streaming job needs to restart itself automatically when a failure is detected.

•	 The job needs to identify the latest checkpoints, and each restarted source 
instance needs to load its checkpoint file and recover its previous state.

•	 We don’t have unlimited storage, so older checkpoints need to be cleaned up to 
save resources.

After looking at all the points above, don’t panic! It is true that the whole checkpointing 
mechanism is a bit complicated, and there are many things happening to make it work. 
Luckily, most of these are handled by the streaming frameworks, and the stream job 
owners need to worry about only one thing: the state. More specifically, the two state 
manipulation functions:

•	 Get the current state of the instance. The function will be invoked periodically.

•	 Initialize the instance with a state object loaded from a checkpoint. The function 
will be invoked during the startup of the streaming job.

As long as the two functions above are provided, the streaming framework will do all the 
dirty work behind the scenes, such as packing the states in a checkpoint, saving it on 
disk, and using a checkpoint to initialize instances.

It sounds like 
checkpointing is complicated 

and a lot of work to 
implement?...
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State handling code in the transaction source 
component
The following is a code example of the TransactionSource component with the 
Streamwork framework:

•	 The base class is changed from Source to StatefulSource.

•	 With this new base class, a new getState() function is introduced to extract 
the state of the instance and return to the engine.

•	 Another change is that the setupInstance() function takes an additional 
State object to set up the instance after it is constructed, which didn’t exist for 
the stateless operators.

public abstract class Source extends Component {
  public abstract void setupInstance(int instance);
  public abstract void getEvents(EventCollector eventCollector);
}

public abstract class StatefulSource extends Component {
  public abstract void setupInstance(int instance, State state);
  public abstract void getEvents(EventCollector eventCollector);
  public abstract State getState();
}

Source and 
StatefulSource 
classes

A new state object is 
used to set up the 
instance.

This new function is used to extract 
the state of the instance.

class TransactionSource extends StatefulSource {
  MessageQueue queue;
  int offset = 0;
  ......
  public void setupInstance(int instance, State state) {
    SourceState mstate = (SourceState)state;
    if (mstate != null) {
      offset = mstate.offset;
      log.seek(offset);
    }
  }

  public void getEvents(Event event, EventCollector eventCollector) {
    Transaction transaction = log.pull();
    eventCollector.add(new TransactionEvent(transaction));
    offset++;
  }

public State getState() {
    SourceState state = new SourceState();
    State.offset = offset;
    return new state;
  }
}

The offset value changes when a new 
event is pulled from the event log and 
emitted to the downstream components.

The state object of the instance 
contains the current data offset in 
the event log.

The data in the state object is 
used to set up the instance.
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Exactly-once or effectively-once?
For the system usage job, neither at-most-one nor the at-least-once semantics are ideal 
because accurate results are not guaranteed, but we need them to make the right deci­
sion. To achieve this goal, we can choose the last semantic: exactly-once, which guaran­
tees that each event is successfully processed once and only once. Hence, the results are 
accurate.

First, let’s discuss what we mean by exactly-once. It is critical to understand the fact 
that every event is not really processed or successfully processed exactly one time like the 
name suggests. The real meaning is that if you look at the job as a black box—in other 
words, if you look only at the input and the output and ignore how the job really works 
internally, it looks like each event is processed successfully once and only once. However, 
if we dive into the system internally, it is possible for each event to be processed more 
than one time. Now, if you look at the topic of this chapter it is delivery semantics instead 
of process semantics. Subtle, right?

When the semantic was briefly introduced earlier in this chapter, we mentioned that 
it is called effectively-once in some frameworks. Technically, effectively-once could be a 
more accurate term, but exactly-once is widely used; thus, we decided to use the term 
exactly-once as the standard in this book, so you won’t be confused in the future.

If you still feel that the looks like (or effectively) part is tricky, it is totally understandable. 
To help you understand better what it really is, let’s steer away and talk a little about an 
interesting concept next: idempotency. Hopefully, it will be helpful in giving you a better 
idea about what we mean by effectively.

A real exactly-once is extremely difficult in 
distributed systems—for real.

It seems that exactly versus 
effectively are close in meaning.  

What exactly are the differences?
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Bonus concept: Idempotent operation
Idempotent operation seems like a loaded term, right? It is a computational and mathe­
matical term that means no matter how many times a function is given a quantity, the 
output will always be the same. Another way to think about it is: making multiple iden­
tical calls to the operation has the same effect as making a single call. Clear as mud? No 
worries. Let’s get into one example in the context of a credit card class.

Let’s look at two methods of the class: setCardBalance() and charge().

•	 The setCardBalance() function sets the card balance to a new value 
specified as the parameter.

•	 The charge() function adds the new amount to the balance.

One interesting property of the setCardBalance() function is that after it is called 
once, the state of the credit card object (the card balance) is set to the new value. If the 
function is then invoked the second time, the balance will still set to the new value again, 
but the state (the balance) is the same as before. By looking at the card balance, it looks 
like the function is only called one time because you can’t tell if it is called once or more 
than once. In other words, the function might be called once or more than once, but it is 
effectively once, since the effect is the same. Because of this behavior, the setCard­
Balance() function is an idempotent operation.

As a comparison, the charge() function is not an idempotent operation. When it is 
invoked once, the balance will increase by the amount. If the call is repeated for the sec­
ond time by mistake, the balance will increase again, and the card object will be in a 
wrong state. Therefore, since the function is not idempotent, it really needs to be called 
exactly once for the state to be correct.

The exactly-once semantic in streaming systems works like the setCardBalance() 
function above. From the states of all the instances in the job, it looks like each event is 
processed exactly one time, but internally, the event might be processed more than once 
by each component.

class CreditCard {
  double balance;

  public void setCardBalance(double balance) {
    this.balance = balance;
  }

  public void charge(float amount) {
    balance += amount;
  }
}

The results would be the same no matter 

how many times (more than 0 times 

though) the setCardBalance
() function is 

called with the same parameter.

The balance (state) would change 

every time the charg
e() function 

is called with the same parameter.
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Exactly-once, finally
After learning the real meaning of the semantic and the concept of the idempotent oper­
ation, plus knowing the power of returning the accurate results, are you more interested 
in how exactly-once works now? Exactly-once may sound fancy, but it is really not that 
complicated. Typically, the exactly-once semantic is supported with checkpointing, 
which is very similar to the at-least-once support. The difference is that checkpoints are 
created for both sources and operators, so they can all travel back in time together during 
a rollback. Note that checkpoints are needed only for the operators with internal states. 
Checkpoints are not needed for the operators without internal states because there is 
nothing to recover during a rollback.

Does it sound simple so far? Don’t celebrate yet. The state of a source instance is just an 
offset. But the state of an operator instance could be much more complicated, since it is 
specific to the logic. For operators, the state could be a simple number, a list, a map, or a 
complicated data structure. Although streaming engines are responsible for managing 
the checkpoints data normally, it is important to understand the cost behind the scenes.

1. Every minute (or other interval), 

each instance of the transaction 

source creates a new checkpoint, 

saves it in the storage, and emits a 

special checkpoint event.

2. When an analyzer instance receives a checkpoint event, it creates a new checkpoint, saves  it in the storage, and passes  the checkpoint event to the  downstream components.

3. The usage writer doesn’t have 

internal data that needs to be 

saved as checkpoints so it ignores 

the checkpoint event.

4. When the job is restarted, 

the engine identifies the 

correct checkpoint to load.  

All instances (that have 

checkpoint data) in the job 

will restore their states from 

the corresponding checkpoint 

from the storage and start 

processing events again.

transaction
source

system
usage

analyzer

usage
writer

API
gateway

checkpoints
storage
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State handling code in the system usage 
analyzer component
With the Streamwork framework, to make the SystemUsageAnalyzer component  
handle the creation and usage of instance state, the changes are similar to the  
TransactionSource we have seen earlier.

•	 The base class is changed from Operator to StatefulOperator.

•	 The setupInstance() function takes an extra state parameter.

•	 A new getState() function is added.

Note that the API supported by the Streamwork framework is a low-level API to show 
you how things work internally. Nowadays, most frameworks support higher level APIs, 
such as functional and declarative APIs. With these new types of APIs, reusable compo­
nents are designed, so users don’t need to worry about the details. You should be able to 
tell the difference when you start using one in the future.

public abstract class Operator extends Component {
  public abstract void setupInstance(int instance);
  public abstract void getEvents(EventCollector eventCollector);
  public abstract GroupingStrategy getGroupingStrategy();
}

public abstract class StatefulOperator extends Component {
  public abstract void setupInstance(int instance, State state);
  public abstract void apply(Event event, EventCollector eventCollector);
  public abstract GroupingStrategy getGroupingStrategy();
  public abstract State getState();
}

A new state object is 
used to set up the 
instance.

This new function is used to extract 
the state of the instance.

class SystemUsageAnalyzer extends StatefulOperator {
  int transactionCount;

  public void setupInstance(int instance, State state) {
    AnalyzerState mstate = (AnalyzerState)state;
    transactionCount = state.count;
    ……
  }

  public void apply(Event event, EventCollector eventCollector) {
    transactionCount++;

    eventCollector.add(transactionCount);
  }

  public State getState() {
    AnalyzerState state = new AnalyzerState();
    State.count = transactionCount;
    return state;
  }
}

A new state object is created to 

store instance data periodically.

When an instance is constructed, 

a state object is used to initialize 

the instance.

The count variable changes when 

events are processed.
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Comparing the delivery semantics again
All the delivery semantics have their own use cases. Now that we have seen all the 
delivery semantics, let’s compare the differences again (in an overly simplified man­
ner) in one place. We can see from the table that follows it is clear that different 
delivery semantics have different pros and cons. Sometimes, none of them are per­
fect for your use case. In those cases, then, you will have to understand the tradeoffs 
and make the decision accordingly. You may also need to change from one to another 
when requirements change.

Delivery semantics At-most-once At-least-once Exactly-once
Accuracy •	 No accuracy 

guarantee because 
of missing events

•	 No accuracy 
guarantee because 
of duplicated events

•	 (Looks like) accurate 
results are guaranteed

Latency (when 
errors happen)

•	 Tolerant to failures; 
no delay when errors 
happen

•	 Sensitive to failures; 
potential delay when 
errors happen

•	 Sensitive to failures; 
potential delay when 
errors happen

Complexity/ 
resource usage

•	 Very simple and light 
weight

•	 Intermediate 
(depends on the 
implementation)

•	 Complex and 
heavyweight

Maintenance 
burden

•	 Low •	 Intermediate •	 High

Throughput •	 High •	 Intermediate •	 Low
Code •	 No code change  

is needed
•	 Some code change is 

needed
•	 More code change  

is needed
Dependency •	 No external 

dependencies
•	 No external 

dependencies (with 
acknowledging)

•	 Need external storage 
to save checkpoints

Regarding decisions and tradeoffs, a reasonable concern for people considering choosing 
at-most-once and at-least-once for benefits like latency and efficiency is that accuracy is 
not guaranteed. There is a popular technique to avoid this problem that could be helpful 
to make people feel better: lambda architecture. With lambda architecture, a companion 
batch process is running on the same data to generate accurate results with higher end-
to-end latency. Since we have a lot to digest in this chapter, we will talk about it later in 
more detail in chapter 10.
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Exercises
1.	 Which delivery semantic would you choose if you were building the following jobs, 

and why?

•	 	Find out the most popular hashtags on Twitter.

•	 Import records from a data stream to a database.

2.	 In this chapter, we have looked at the system usage analyzer 
component in the system usage job and modified it to be an 
idempotent operation. What is the usage writer component?  
Is it an idempotent operation or not?

Summary
In this chapter, we discussed an important new concept in streaming systems: delivery 
semantics or delivery guarantees. Three types of semantics you can choose for your 
streaming jobs are:

•	 At-most-once—Each event is guaranteed to be processed no more than once, 
which means it could be skipped when any failure happens in the streaming jobs.

•	 At-least-once—Events are guaranteed to be processed by the stream jobs, but it is 
possible that some events will be processed more than once in the face of failures. 

•	 Exactly-once—With this semantic, from the results, it looks like each event is 
processed only once. It is also known as effectively-once.

We discussed the pros and cons of each of these semantics in this chapter and briefly 
talked about an important technique to support at-least-once and exactly-once in 
streaming systems: checkpointing. The goal is for you be able to choose the most suitable 
delivery semantics for  your own use cases.
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system
usage

analyzer

usage
writer
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Up next . . .
From chapter 2 through chapter 5, quite a few concepts have been introduced. They 
are the most common and basic concepts you need when you start building streaming 
systems. In the next chapter, we are going to take a small break and review what we 
have learned so far. Then, we will jump into more advanced topics like windowing and 
join operations.
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In this chapter

•	 a review of the concepts we’ve learned

•	 an introduction of more advanced concepts to be 

covered in the chapters in part 2

6Streaming systems review 
and a glimpse ahead

After learning the basic concepts in streaming systems in the previous 
chapters, it is time to take a small break and review them in this chapter. We 
will also take a peek at the content in the later chapters and get ready for the 
new adventure.

Technology makes it possible for people to gain control 

over everything, except over technology.

—John Tudor
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Streaming system pieces
A job is an application that loads incoming data and processes it. All streaming jobs have 
four different pieces: event, stream, source, and operator. Note that these concepts may or 
may not be named in a similar fashion in different frameworks.

Job, also called a Pipeline or a 

Topology, is an implementation of a 

streaming system. A job is composed 

of components (sources and 

operators) and streams connecting 

the components.

A stream refers to the ongoing delivery 

of events and a connection between two 

components.Event, also known as Tuple, Element, or 

Message in different scenarios, is a 

single piece of undividable data in  

a stream.

Source is a component that brings 

in data from the outside world 
into a streaming system. In other 

words, sources are the entry 
points of streaming systems for 

data.

Operator, also called Transform, 

is the part th
at receives and 

processes events. Operators are 

where the logic will occur.  

Operators can accept events 

from data sources or other 

upstream operators.

Source

Operator 1

Operator 2
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Parallelization and event grouping
Processing events one by one is usually not acceptable in the real world. Parallelization is 
critical for solving problems on a large scale (i.e., it can handle more load). When using 
parallelization, it is necessary to understand how to route events with a grouping 
strategy.

Both the sensor reader 

(the upstream 

component) and the 

vehicle counter  

(the downstream 

component) have a 

parallelism of two.

The grouping strategy 
decides how events are 
routed to parallelized 
downstream instances.

With “shuffle grouping,” events 

are routed to instances 

(pseudo) randomly.

With “fields grouping,” events are 
routed predictably to instances 
based on specific fields in each 
event.
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DAGs and streaming jobs
A DAG, or directed acyclic graph, is used to represent the logical structure of a streaming 
job and how data flows through it. In more complicated streaming jobs like the fraud 
detection system, one component can have multiple upstream components (fan-in) and/
or downstream components (fan-out).

In chapter 2, we built our first 
implementation of our vehicle  
counting streaming job. The logical 
representation of the job is a simple 

DAG.

In chapter 3, we parallelized our 
streaming job out to handle the 
increased traffic on the bridge. 
Even though there are multiple 
instances of each component now, 
the DAG would still be represented 
the same way as before.

In chapter 4, we switched contexts and built a fraud detection system. The job could be represented like this.

The same rule applies here.  
The number of instances of  
each component doesn’t  
affect the DAG of the job.

Fan-out

Fan-in

Sensor reader

Vehicle counter

 API 
gateway

transaction
presenter

transaction
source

average 
ticket

analyzer

windowed
proximity 
analyzer

windowed
txn count 
analyzer

score 
aggregator

DAGs are useful for 
representing streaming jobs.
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Delivery semantics (guarantees)
After understanding the basic pieces of streaming jobs, we stepped back and looked at 
the problems to solve again. What are the requirements? What is important for the prob-
lem? Throughput, latency, and/or accuracy?

After the requirements are clear, delivery semantics need to be configured accordingly. 
There are three delivery semantics to choose from:

•	 At-most-once—Streaming jobs will process events with no guarantees of being 
successfully processed at all.

•	 At-least-once—Streaming jobs guarantee that every event will be successfully 
processed at least once, but there is no guarantee how many times each event will 
be processed.

•	 Exactly-once—Streaming jobs guarantee that, it looks like each event is processed 
once and only once. It is also known as effectively-once.

The exactly-once guarantees accurate results, but there are some costs that can’t be 
ignored, such as latency and complexity. It is important to understand what require-
ments are essential for each streaming job in order to choose the right option.
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Delivery semantics used in the credit card 
fraud detection system
In chapter 5, a new system usage job was added into the credit card fraud detection sys-
tem. It gives a real-time view of the usage of the whole system. The fraud detect job and 
the new job have different requirements:

•	 Latency is more important for the original fraud detection job.

•	 Accuracy is more important for the new system usage job.

As a result, different delivery semantics are chosen for them accordingly.

At-most-once semantic is 

chosen for the fraud 

detection job to fulfill the 

latency requirement.

In chapter 5, a new system usage job was 
added to the transaction processing 
system. Exactly-once semantic is chosen 
for the job, because accuracy is important.
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Which way to go from here
The chapters up until now have covered the core concepts of streaming systems. These 
concepts should get you started building streaming jobs for many purposes in a frame-
work of your choosing.

But they are definitely not all in streaming systems! As you move forward in your 
career and start to solve bigger, more complex problems, you are likely going to run into 
scenarios that will require more advanced knowledge of streaming systems. In the fol-
lowing chapters in part 2 of this book, a few more advanced topics will be discussed:

•	 Windowed computations

•	 Joining data in real time

•	 Backpressure

•	 Stateless and stateful computations

For the basic concepts we have studied in the previous chapters, order is important so far 
as each chapter built upon the previous. However, in the second part of the book each 
chapter is more standalone, so you can read the chapters either sequentially or in an 
order you prefer. To make it easier for you to choose which ones to read first, here is a 
glimpse ahead of what will be covered in each of the chapters.
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Windowed computations
So far, we have been processing events one by one in our examples. However, in the fraud 
detection job, the analyzers rely on not only the current event but also on the informa-
tion of when, where, and how a card was used recently to identify unauthorized card 
usages. For example, the windowed proximity analyzer identifies fraud by detecting 
credit cards charged in different locations in a short period of time. How can we build 
streaming systems to solve these types of problems?

In streaming systems, to slice events into event sets to process, windowed computations 
will be needed. In chapter 7, we will study different windowing strategies in streaming 
systems with the windowed proximity analyzer in the fraud detection job.

In addition, windowed computation often has its limitations, and these limitations 
are important for this analyzer and many other real-world problems. In this chapter, we are 
also going to discuss a widely used technique: 
using key-value stores (dictionary-like 
database systems) to implement win-
dowed operators.

San Ramon, CA

Saint Louis, MO

New York, NY

Portland, OR

time

The solid  ovals 
represent card 1.

The solid diamonds 
represent card 2.

Repeated use of a single 

card across multiple 

locations could be a sign of 

fraud. 

In streaming systems, windowed 
operators process event sets instead of 
individual events.

How do we define what a  
slice is?
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Joining data in real time
In chapter 8, we will build a new system to monitor the CO

2
 emission of all the vehicles 

in Silicon Valley in real time. Vehicles in the city report their models and locations 
every minute. These events will be joined with other data to generate a real-time CO

2
 

emission map.

For people who have worked with databases before, join shouldn’t be a strange concept. 
It is used when you need to reference data across multiple tables. In streaming systems, 
there is a similar join operator with its own characteristics, and it will be discussed in 
chapter 8. Note that join is the type of stream fan-in we have mentioned (but skipped) in 
chapter 4.

We will keep track of the 
vehicles going through each zone 
and aggregate the CO

2 emission results on the fly.

How hard could it be to join data in 
real-time?

Joining data in real time is harder 
than you might guess. We will talk 

about it in chapter 8.
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Backpressure
After you have a streaming job running to process data, you will (hopefully not too 
soon) face a problem: computers are not reliable! Well, to be fair, computers are reliable 
mostly, but typically streaming systems might keep running for years, and many issues 
can come up.

The team got a request from the banks to review the fraud detection system and pro-
vide a report about the reliability of the system. More specifically, will the job stop work-
ing when there is any computer or network issue, and will the results be missing or 
inaccurate? It is a reasonable request, since a lot of money is involved. In fact, even with-
out the request from the banks, it is an important question anyway, right?

Backpressure is a common self-protection mechanism supported by most streaming 
frameworks. With backpressure, the processes will slow down temporarily and try to 
give the system a chance to recover from problems, such as temporary network issues or 
sudden traffic spikes overloading computers. In some cases, dropping events could be 
more desirable than slowing down. Backpressure is a useful tool for developers to build 
reliable systems. In chapter 9, we will see how streaming engines detect and handle issues 
with backpressure.

 API 
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A lot of machines are working 
together in this system. 

Hardware or software issues 
could potentially happen at 

many places any time.

Money is 
involved and we 

can’t lose track of 
even a penny. Will this 

system guarantee 
that?
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Stateless and stateful computations
Maintenance is important for all computer systems. To reduce cost and improve reliabil-
ity, Sid has decided to migrate the streaming jobs to new and more efficient hardwares. 
This will be a major maintenance task, and it is critical to proceed carefully to make sure 
everything works correctly.

A debt we have left behind in chapter 5, delivery semantics, is stateful component. We 
have discussed briefly what a stateful component is and how it is used in at-least-once 
and exactly-once delivery semantics. However, sometimes less is more. It is important to 
understand the tradeoffs to make better technical decisions when building and main-
taining streaming systems.

In chapter 10, we will look into how stateful components work internally in greater 
detail. We will also talk about alternative options to avoid some of the costs and 
limitations.

The old machines that the 

streaming jobs are running on 

will be replaced by new and 

more powerful and efficient 

machines.

Is the process risky? How do we 
make sure the results are correct 
during and after the migration?





The second part of this book takes you deep into theory with some framework- 
agnostic implementations of how streaming systems handle more complex 
topics. Chapter 7 shows you how to slice never-ending streams of data into 
meaningful chunks, and chapter 8 lays out the process of joining data in 
real time. In chapter 9, you find out how streaming systems can help you 
recover from processing failures, and in chapter 10, you dive into the com-
plexities of managing state in real-time streaming jobs. Finally, chapter 11 
quickly recaps the book’s content and gives you some guidance on what to 
do after reading this book.

Part 2  
Stepping up
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In this chapter

•	 standard windowing strategies

•	 time stamps in events

•	 windowing watermark and late events

7

In the previous chapters, we built a streaming job to detect fraudulent credit 
card transactions. There could be many analyzers that use different models, 
but the basic idea is to compare the transaction with the previous activities on 
the same card. Windowing is designed for this type of work, and we are going 
to learn the windowing support in streaming systems in this chapter.

Windowed computations

The attention span of a computer is only as long as its 

power cord.

—Unknown
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Slicing up real-time data
As the  popularity of the team’s new product has grown so has the attention of new types 
of hackers. A group of hackers has started a new scheme involving gas stations.

Here’s how it works: They capture an innocent victim’s card information and dupli-
cate it from multiple new physical credit cards. From there, the attackers will send the 
newly created fraudulent cards out to others in the group and orchestrate spending 
money on the same credit card from multiple locations across the world at the same time 
to purchase gas. They hope that by charging the card all at once, the card holder will not 
notice the charges until it’s too late. The result is free gas. Why do they go to a global 
scale to try and get free tanks of gas? We can consider this a mystery.

How do we prevent this scam?
For the purposes of this book, we are going to use round numbers for easy math calcu-
lations. We will also assume that the fastest anyone can travel is 500 miles per hour on a 
plane. Luckily, the team has already thought of this type of scam.

If the same card is physically swiped at 
multiple physical locations across the 
world, it’s likely that those transactions 
are fraudulent.

All the transactions are sent to the fraud detection system running here.



	 Breaking down the problem in detail� 157

Breaking down the problem in detail
We have two problems that we are trying to solve here. First, we are looking for large 
jumps of distance within a single credit card. Second, we are looking for large jumps in 
card usage across multiple credit cards. In the first scenario, we will be looking to mark 
specific card transactions as fraudulent; in the second one, we will be looking to flag 
merchants (gas stations) as under attack by these menacing gas thieves.

Because of the max amount of travel per hour 
(500 Mph), it’s safe to assume that someone cannot physically swipe their card in San Ramon, California, then two hours later swipe their card in Saint Louis, Missouri, because the distance traveled in 2 hours is greater than physically possible by a human.

San Ramon, California Saint Louis, Missouri

Approximately 2,000 miles apart

Here’s our formula:

final double maxMilesPerHour = 500;
final double distanceInMiles = 2000;
final double hourBetweenSwipes = 2;

if (distanceInMiles > hourBetweenSwipe * maxMilesPerHour) {
  // mark this transaction as potentially fraudulent
}

How does the analyzer correlate a 
current transaction with older transactions 

in real time?
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Breaking down the problem in detail (continued)
This hacker group in particular likes to create massive worldwide attacks—all filling up 
cars with gas. It’s important to look at the behaviors of the entire credit card system as 
well as one credit card in the system. When these large-scale gas station attacks happen, 
we need some way to block stores from processing any credit cards that are being attacked 
to further enhance the security of the system. Study the diagram below that uses a few 
US cities as examples for locations from which a card could be charged.

We have two ways to prevent this type of scam:

•	 We can block individual credit cards from being charged.

•	 We can block gas stations from processing any credit cards.

But what tools do we have in our streaming systems to help us detect fraudulent activity?

Each icon represents 
a different card 
being charged. 

San Ramon, CA

Saint Louis. MO

New York, NY

Portland, OR

time

Looking at this graph, you can see 
that two cards are charged at 
different locations all over the US. 
How we decide to split up this graph on 
the x (time) axis will be the defined 
window for the operation.

The solid ovals 
represent card 1.

The solid diamonds 
represent card 2.

Repeated use of a single 

card across multiple 

locations could be a sign  

of fraud.
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Two different contexts
To address our two different ways of preventing fraud, let’s look at the graph from a pre-
vious page to further show how we can split up the context. Remember that the win-
dowed proximity analyzer looks for fraud within the context of single credit cards, and 
the new analyzer works within the context of stores.

San Ramon, CA

Saint Louis. MO

New York, NY

Portland, OR

Each icon represents 
a different card 
being charged. 

time

Windowed proximity 

analyzer

The windowed proximity 
analyzer checks only for 

fraudulent use within the 
context of one card. 

time

The analyzer for gas 

stations

The proximity trend analyzer 
checks for fraudulent use within 

the context of all the credit cards used in a location. 

San Ramon, CA

Saint Louis. MO

New York, NY

Portland, OR
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Windowing in the fraud detection job
Most of the analyzer components in the fraud detection job use some type of window (we 
will discuss this next) to compare the current transaction against the previous ones. In 
this chapter, we are going to focus on the windowed proximity analyzer, which detects 
individual credit cards being swapped in different locations. For the gas stations, we are 
going to  leave it to our smart readers.

The windowed proximity analyzer looks for 

large jumps within the context of a single 

card.  In this context, the card proximity 

analyzer is only making correlations with 

a single card in a specified window.
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What exactly are windows?
Since the credit card transactions are constantly running through the system, it can be 
challenging to create cut-off points or segments of data to process. After all, how do you 
choose an end to something that is potentially infinite, such as a data stream?

Using windows in streaming systems allows developers to slice up the endless stream 
of events into chunks for processing. Note that the slicing can be either time-based (tem-
poral) or event count-based in most cases. We are going to use time-based windows in 
context later, since they fit our scenarios better.

Transactions from all over the world 
are sent through the fraud detection 
job. Windows are used to group the 
infinite flow of transactions to the 
streaming jobs into finite windows of 
data.

Windows allow us to break up 
the continuous stream of 
events into smaller chunks.

The continuous 
stream of events
between components

More windows here
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Looking closer into the window
What we’ve done with streaming systems so far in this book has been on a per-event, or 
individual, basis. This method works well for many cases, but it could have some limita-
tions as you start to get into more complex problems. In many other cases, it can be 
useful to group events via some type of interval to process. Check out the diagrams 
below to learn a little more about the very basic concept of windowing.

window 1

Note that window size can be defined by a time period or number of elements. It is defined by the developers.

window 2 window 3

time

In this chapter, we will process events in groups divided 
by windows.

Before, we have been processing each element individally. 

time
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New concept: Windowing strategy
After understanding what windowing is, let’s look at how the events are grouped together 
using a windowing strategy. We are going to walk you through three different types of 
windowing strategies and discuss their differences in the windowed proximity analyzer. 
The three types of windowing strategies are:

•	 Fixed window

•	 Sliding window

•	 Session window

Often, there is no hard requirement for choosing a windowing strategy (how the events 
are grouped). You will need to talk with other technologists and product owners on your 
team to make the best decision for the specific problem you are trying to solve.

How we will split up the endless stream of events to look 
for large jumps in location? Will choosing different window 

strategies affect accuracy?

Does it really make a difference in 
how we split up the events?
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Fixed windows
The first and most basic window is fixed window. Fixed windows are also referred to as 
tumbling windows. Events received from the beginning to the end of each window are 
grouped as a batch to be processed together. For example, when a fixed one-minute time 
window (also known as a minutely window) is configured, all the events within the same 
one-minute window will be grouped together to be processed. Fixed windows are simple 
and straightforward, and they are very useful in many scenarios. The question is: do they 
work for the windowed proximity analyzer? 

Each of  these sections 
represents a 1-minute 
time window.
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Fixed windows in the windowed proximity 
analyzer
Here is an example of using a fixed window to look for repeated charges from the same 
card. To keep things simple, we are just using minutely windows to see what each group 
of events would look like. The goal is to find out repeated transactions from each card 
within each one-minute window. We will worry about the other things, such as the 
500-miles-per-hour max distance logic later.

It’s important to note that using a fixed time window only means the time interval is 
fixed. It’s possible to get more or fewer events in each window based on the number of 
events flowing through the job.
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1st 1 min window: 
00:00-00:59

2nd 1 min window: 
01:00-01:59

3rd 1 min window: 
02:00-02:59

The team decided to look at 

siloed windows of time to look 

for transactions from the same 

credit card.

The timestamp of each 
transaction. Only minute and 
second values are included here.

Even though each window 
time interval is the same, 
the number of events per 
window varies.
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Detecting fraud with a fixed time window
Let’s look at how the card proximity analyzer would behave using fixed time windows. 
The amount of transactions per window has been limited to only a few, so we can learn 
the concepts of windowing most easily.

If you look closely at this diagram, it will hopefully be more clear how fixed time 
windows would affect potential fraud scores. By running fixed time windows, you are 
just cutting off other transactions that run through the system, even if they are only a 
second outside of the window. Do you think this is the windowing type we should use 
to most accurately detect fraud?

The answer is that a fixed time window is not ideal for our problem. If two transac-
tions on the same card are a just few seconds apart, but they fall into two different fixed 
windows, such as the two transactions from the card ....6789, we won’t be able to run the 
card proximity function on them.

In this window, there is 
no repeated card, so no 
fraud here. 

Card ....1212 has a duplicated 
charge in the same window. 
Our card proximity function 
would be run to assess the 
possibility of fraud.

In this window, there is 
no repeated card, so no 
fraud here. 
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....6789

....1212
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card no:

....1212

....2345

....7865

....4433

00:12

00:49

01:10

00:55

01:26

01:37

01:42

02:22

02:38

The two 
transactions on the 
card ....6789 are 21 
seconds apart, but 
they belong to two 
different fixed 
windows.

And these two 
transactions on 
the card ....1212 
have the same 
issue.

Looks like the fraud score won’t 
be accurate if we just cut off events 

from being included in our fixed 
windows.
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Fixed windows: Time vs. count
Before moving forward to the next windowing strategy, let’s take a look at two types of 
fixed windows first:

•	 Time windows are defined by an unchanging interval of time.

•	 Count windows are defined by an unchanging interval of number of events 
processed.

Time Windows. In this case the interval is 3 minutes. The number of events in each 
window can differ.

e1 e2 e3 e4 e5 e6 e7

0 min 3 min 6 min

1st 3-minute window 2nd 3-minute window

Remember!! The count of events can differ in 
time-based windows. It’s completely acceptable  
to have 3 in one window and 4 in another.

With count Windows, the number of events in each window will be the same. The time 
intervals of each window can differ.

e1 e2 e3 e4 e5 e6 e7

0 elements 3 elements 6 elements

1st 3-count window 2nd 3-count window
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Sliding windows
Another widely supported windowing strategy is a sliding window. Sliding windows are 
similar to fixed time windows but different in that they also have a defined slide interval. 
A new window is created every slide interval instead of when the previous window ends. 
The window interval and slide interval allow windows to overlap, and because of this, 
each event can be included into more than one window. Technically, we can say that a 
fixed window is a special case of sliding window in which the window interval equals the 
slide interval.

Each of these brackets 
represent a window of 2 
minutes with a 1-minute slide 
interval. The windows are 
overlapping and the image is 
not represented to scale.
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Sliding windows: Windowed proximity 
analyzer
We could use a sliding window to look for repeated charges from the same card in over-
lapping windows of time. The diagram below shows one-minute sliding windows with 
30-second slide intervals. When using sliding windows it’s important to understand that 
an event may be included in more than one window.

card no: ....1234

card no:

card no:

card no:

card no:

....6789

....1212

....6789

....1212

card no:

card no:

card no:

card no:

....1212

....2345

....7865

....4433

00:12

00:49

01:10

00:55

01:26

01:37

01:42

02:22

02:38

With sliding windows, the two 
transactions on card ....6789 
are processed together in 
window 2.

Each transaction belongs to 

multiple windows now.

window 1:
00:00 - 00:59

window 3:
01:00-01:59

window 5:
02:00-02:59

window 2:
00:30-01:29

window 4:
01:30-02:29

What side effects would 
occur from grouping events in 

more than one window?  Would it be 
better this way?
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Detecting fraud with a sliding window
Sliding windows differ from fixed windows, as they overlap each other based on the spec-
ified interval. The slide provides a nice mechanism for a more evenly distributed aggrega-
tion of events to determine whether a transaction is to be marked as fraudulent or not. 
Sliding windows help with the lopping off of events, as we saw in fixed windows.

12121234 6789 3476 12121234 1212 3476

12121234 6789 3476 12121234 1212 3476

12121234 6789 3476 12121234 1212 3476

As the window slides, the data elements it can make operations on changes. The gradual 
slide or advance of what data it can reference offers a more gradual and consistent view 
of data.

Really, what we are 
doing with sliding 
windows is keeping a 
rolling context of data 
for us to reference and 
decide if an event should 
be marked as fraudulent 
or not. Look below for a 
different angle of 
viewing a sliding window.

card no: ....1234

card no:

card no:

card no:

card no:

....6789

....1212

....6789

....1212

card no:

card no:

card no:

card no:

....1212

....2345

....7865

....4433

00:12

00:49

01:10

00:55

01:26

01:37

01:42

02:22

02:38

Do you think the overlap on 
sliding windows would be 
better or worse for calculat-
ing averages? Why?

Pop Quiz!
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Session windows
The last windowing strategy we would like to cover before jumping into the implemen-
tation is the session window. A session represents a period of activity separated by a 
defined gap of inactivity, and it can be used to group events. Typically, session windows 
are key-specific, instead of global for all events like the fixed and sliding windows.

transaction
source

average 
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windowed
proximity 
analyzer

windowed
txn count 
analyzer

score 
aggregator

The stream is for a specific 
card, and each of these 
brackets represents a 
session window. Note that 
there is a gap between 
them.
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Session windows (continued)
Session windows are typically defined with a timeout, which is the max duration for a 
session to stay open. We can imagine there is a timer for each key. If there are no events 
under the key received before the timer times out, the session window will be closed. 
Next time, when an event under the key is received, a new session will be started. In the 
diagram below, let’s take look at the transactions from two cards (session windows are 
typically key specific, and the key here is the card number). Note that the threshold for 
the gap of inactivity is 10 minutes.

card no: ....1212 card no: ....6789

00:55

01:37

01:42

00:49

01:10

15:21

15:33

Session windows are key specific. In this example 

of credit card transactions, the key is the card 

number. Each vertical line represents the 

transactions of a specific card.

window 1

window 2

The gap between the two transactions is less than the 10-minute threshold; hence, they are grouped into the same session window.

Each card has its 

own session 

window.

The gap here is greater 

than the 10-minute 

threshold. The previous 

session window is closed 

and a new session 

window is opened when 

new transactions on this 

card are received.
time

window 3
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Detecting fraud with session windows
Session windows are relatively less straightforward than fixed and sliding windows. Let’s 
try to see how session windows can potentially be used in the fraud detection job. We 
don’t have an analyzer with this model in the current design; however, it could be a good 
one to consider and a good example to demonstrate one use case of session windows.

When someone is shopping in a mall, typically they spend some time looking and 
comparing first. After some time, finally a purchase is made with a credit card. 
Afterwards, the shopper may visit another store and repeat the pattern or take a break 
(you know, shopping can be strenuous). Either way, it is likely that there will be a period 
of time where the card is not swiped.

Therefore, if we look at the two card transaction timelines above, the timeline to the left 
looks more legitimate than the one to the right, because  only one or two transactions 
happen in each short period of time (session window), and there are gaps between the 
purchases. In the timeline to the right, the card has been charged many times continu-
ously without a reasonable gap.

01:40

01:42

18:11

42:24

01:40

01:41

01:43

01:48

01:52

02:05

The transactions look more legitimate because transactions are in multiple session windows and there are gaps between sessions.

The transactions look more suspicious 

because they are continuous; all 

happen in a single session window.
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Summary of windowing strategies
We have gone through the concepts of three different windowing strategies. Let’s put 
them together and compare the differences. Note that time-based windows are used in 
the comparison, but fixed and sliding windows can be event count-based as well.

•	 Fixed windows (or tumbling windows) have fixed sizes, and a new window starts 
when the previous one closes. The windows don’t overlap with each other.

•	 Sliding windows have the same fixed size, but a new one starts before the previous 
one closes. Therefore, the windows overlap with each other.

•	 Session windows are typically tracked for each key. Each window is opened by 
activity and closed by a gap of inactivity.

Fixed windows have fixed 
size, and the windows don’t 
overlap with each other.

Sliding windows have fixed 

size, too, but the windows 

overlap with each other.

Session windows are decided by 
the activities and inactivities of 

each key.
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Slicing an event stream into data sets
After all the concepts, let’s move on to the implementation-related topics. With window-
ing strategies, events are processed in small sets instead of isolated events now. Because 
of the difference, the WindowedOperator interface is slightly different from the reg-
ular Operator interface.

In regular operators, events are processed one by one.

public interface Operator {
  public void apply(Event event, EventCollector eventCollector);
}

Operator instance executor

Operator instance
apply(Event)

In windowed operators, events are sliced into event sets and 

wrapped in the EventWin
dow objects by the engine and sent 

to user-defined operators to process. Each EventWin
dow 

object also includes timing information like the start and end 

times of the window.

public interface WindowedOperator {
  public void apply(EventWindow window, EventCollector eventCollector);
}

Windowed operator instance executor

Windowed
operator instance

apply(EventWindow)

Windower
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Windowing: Concept or implementation
Fundamentally, a windowed operator is a mechanism to reorganize events as event sets, 
and streaming engines are typically responsible for managing the event sets. Compared to 
the jobs we have seen before this chapter, the streaming engines need more resources for 
windowed operators. The more events there are in each window, the more resource the 
streaming engines need. In other words, stream jobs are more efficient when the window 
sizes are small. However, real world problems are often not that ideal. C’est la vie.

Some of you may have already seen the issues with using windowed operators to 
implement the windowed proximity analyzer in the fraud detection job:

•	 In this analyzer, we would like to track transactions far away from each other 
and compare the distance and the time between them. More specifically, if the 
distance is greater than 500 miles per hour times the time difference between 
two transactions in hours, the operator will mark the transaction as likely 
fraudulent. So do we need a multi-hour long sliding window? Hundreds of 
billions of transactions could be collected in this window, which could be 
expensive to track and process.

•	 Things become more complicated when the 20-millisecond latency requirement 
is taken into consideration. With a sliding window, there is a slide interval to 
determine, and it needs to be short. If this interval is too long (for example, one 
second), most transactions (those that happened in the first 980 milliseconds in 
the second) are going to miss the 20-millisecond deadline.

In conclusion, the concepts are useful for us to choose the right strategy for the problem, 
but to implement the analyzer in the fraud detection job, we need to be more creative 
than simply relying on the frameworks. Note that this is not a rare case in real-world 
systems. Streaming frameworks are mainly designed for fast and lightweight jobs, but 
life is never perfect and simple.

It seems like we can’t  use the  
windowing implementation to solve this 

problem.

Right. The basic Windowed 
operators work in some simple 

cases, but in this job we need to be 
more creative.
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Another look
Now let’s see how the team solves the challenge and stops the gas thieves. The first step 
is to understand how exactly the transactions are processed in the windowed proximity 
analyzer.

In this operator, we want to track the times and locations of transactions on each card 
and verify that the time and distance between any two transactions don’t violate the 
rule. However, “any two transactions in the window” isn’t really a necessary statement. 
The problem can be simplified if we look at it in a slightly different way: at any time when 
a new transaction comes in, we can compare the time and location of the transaction 
with the previous transaction on the same card and apply our equation. The past transac-
tions on the card, before the previous one, and all the transactions on the other cards 
have no effect on the result and can be ignored.

Now since we have the equation already, the problem becomes pretty straightforward: 
how do we find the previous transaction on the same card?

You might be wondering: what about the sliding window? Good question, and let’s 
take another look at it too. The perimeter of the earth is about 25,000 miles, so 12,500 
miles is the max distance between any two places on earth. Based on our 500 miles per 
hour traveling speed rule, a person can travel to any place on earth within about 25 
hours. Therefore, transactions older than 25 hours don’t need to be calculated. The 
updated version of the problem to solve is: how can we find out the previous transaction 
on the same card within the past 25 hours?
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....1212
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For each transaction,  

we just need to compare  

it with the previous 

transaction on the  

same card.

The problem becomes much simpler 
this way.
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Key–value store 101
After thinking about the calculation within the windowed proximity analyzer operator, 
they decided to use a key–value store system to implement it. This is a very useful tech-
nique to build windowed operators without using the standard windowed operator sup-
port in streaming frameworks, so let’s talk about it here.

A key–value store (also known as a K–V store) is a data storage system designed for 
storing and retrieving data objects with keys. It has been a very popular paradigm in the 
past decade. In case you are not familiar with the term, it works just like a dictionary in 
which each record can be uniquely identified by a specific key. Unlike the more tradi-
tional (and better known) relational databases, the records are totally independent from 
each other in key–value stores.

Why would we want storing systems that have fewer functions? The major advantages are 
performance and scalability. Because key–value stores don’t need to keep track of the rela-
tions between different records, rows, and columns, the internal calculations can be a lot 
simpler than the traditional databases. As a result, operations like reading and writing run 
much faster. And because the records are independent of each other, it is also much easier 
to distribute data on multiple servers and make it work together to provide a key–value 
store service that can handle a huge amount of data. The two advantages are important for 
the fraud detection system as well as many other data processing systems.

Another interesting feature supported by some key–value stores is expiration. An 
expiration time could be provided when a key–value pair is added into the store. When 
the expiration time comes, the key–value pair will be removed automatically from the 
system and the occupied resources will be freed. This feature is very convenient for win-
dowed operators in streaming systems (more specifically, the “within the past 25 hours”  
part of our problem statement).

In key-value stores, each record is 
associated with a unique key. Typically, 
only two basic and straightforward 
functions are needed: get(key), and 
put(key, value).
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Implement the windowed proximity analyzer
With the help of this key–value store, streaming engines don’t need to keep and track all 
the events in the windows in memory. The responsibility has been returned to the sys-
tem developers. The bad news is: the usage of a key–value store can be different from case 
to case. There is no simple formula to follow when implementing windowing strategies 
with key–value stores. Let’s take a look at the windowed proximity analyzer as an 
example.

In the analyzer, we need to compare the time and location of each transaction with 
the previous transaction on the same card. The current transaction is in the incoming 
event, and the previous transaction for each card needs to be kept in the key–value store. 
The key is the card id, and the value is the time and location (to keep it simple, in the 
source code that follows the whole event is stored as the value).

public class WindowedProximityAnalyzer implements Operator {
  final static double maxMilesPerHour = 500;
  final static double distanceInMiles = 2000;
  final static double hourBetweenSwipes = 2;
  final KVStore store;

  public setupInstance(int instance) {
    store = setupKVStore(); 
  }
  
  public void apply(Event event, EventCollector eventCollector) {
    TransactionEvent transaction = (TransactionEvent) event;
    TransactionEvent prevTransaction = kvStore.get(transaction.getCardId());

    boolean result = false;
    if (prevTransaction != null) {
      double hourBetweenSwipe =
          transaction.getEventTime() - prevTransaction.getEventTime();
      double distanceInMiles = calculateDistance(transaction.getLocation(),
          prevTransaction.getLocation());

      if(distanceInMiles > hourBetweenSwipe * maxMilesPerHour) {
        // Mark this transaction as potentially fraudulent.
        result = true;
      }
    }

    eventCollector.emit(new AnazlyResult(event.getTransactionId(), result));
    kvStore.put(transaction.getCardId(), transaction); 
  }
}

Operator instead of 
WindowedOperator is used here.

Set up the key-value store.

Fraudulent transaction 
is detected.

The current transaction is stored into 
the key-value store using the card id 

as the key. The previous value is 
replaced now.

The previous transaction is loaded 
from the key-value store.
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Event time and other times for events
There is one more concept we will cover before wrapping up this chapter. In the code of 
the windowed proximity analyzer, there is one important piece we would like to zoom in 
and take a closer look at.

      transaction.getEventTime();

So what is event time? Are there other times? Event time is the time at which the event 
actually occurs. Most processes on the event don’t happen immediately. Instead, after 
the event has occurred, it is normally collected and sent to some backend systems later, 
and then even later it is really processed. All these things happen at different times, so 
yes, there are quite a few other times. Let’s use our simple traffic monitoring system as 
the example and look at the important times related to an event.

Among all the times, the most important ones for each event are event time and process-
ing time. Event time for an event is like the birthday for a person. Processing time, on the 
other hand, is the time at which the event is being processed. In the fraud detection 
system, what we really care about is the time when the card is swiped, which is the event 
time of the transaction. Event time is typically included in the event objects so that all 
the calculations on the event have the same time to get the consistent results.

Time 1: a vehicle is detected and 

the corresponding event is 

created. This is the event time.

Time 2: the event is uploaded to the sensor render. This is the upload time.

Time 3: the event is received 
by the sensor reader. This is 

the server receive time.

Time 4: the event is received by 

this vehicle counter instance 

and processed. This is the 

processing time.

IoT sensor 
reader

Vehicle counter

Vehicle counter
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Windowing watermark
Event time is used in many windowed computations, and it is important to understand 
the gap between event time and processing time. Because of the gap, the windowing 
strategies we have learned in this chapter aren’t as straightforward as they look.

If we look at the traffic monitor system as an example and configure the vehicle 
counter operator with simple fixed windows to count the number of vehicles detected in 
each minute, what would be the open and close times for each window? Note that the 
time for each event to arrive at the vehicle counter operator instances (the processing 
time) is a little after it is created in an IoT sensor (the event time). If the window is closed 
exactly when the end of the window comes, the events occurring near the end of the 
window on the IoT sensors will be missing because they haven’t been received by the 
counter instances yet. Note that they can’t be put into the next window because, based 
on the event time, they belong to the already-closed window.

The solution to avoid missing events is to keep the window open for a little longer and 
wait for the events to be received. This extra waiting time is commonly known as the 
windowing watermark.

If we look back at the implementation of the windowed proximity analyzer, the water-
mark is another reason the standard windowed operator is not ideal for the case. Leaving 
extra time before processing event sets would introduce extra latency and make the 
20-millisecond latency requirement even more challenging to meet.

The previous 

event window

The new event window

The window is closed a little later than 

the window end time to wait for the 

events to arrive. Note that a new 

window has been opened at the time 

and the incoming events will be 

assigned to one of them based on the 

event time.

The extra waiting time is 

the windowing watermark.

A vehicle might be detected here at 

the end of the 1-minute time window.
If the window is closed at exactly the end of the time 
window, some vehicles detected by the IoT sensors could 
be missing because they haven’t arrived here yet.

IoT sensor 
reader

Vehicle counter

Vehicle counter
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Late events
The windowing watermark is critical for avoiding missing events and generating com-
pleted event sets to process. The concept should be easy to understand, but deciding the 
waiting time isn’t as easy.

For example, in the traffic monitoring system, our IoT sensors work very well. As a 
result, normally, all the vehicle events are collected successfully within one second. In 
this case, a one second windowing watermark could be reasonable.

However, the word normally might trigger an alert. Earlier in the book, we mentioned a 
few times that one major challenge in building any distributed system is failure han-
dling. It is often a good habit to ask: what if it doesn’t work as expected? Even in a simple 
system like this one, events could be delayed to be later than one second if something 
goes wrong—for example, the sensor or the reader could slow down temporarily, or the 
network could be throttled if the connection is not stable. When this delay happens, the 
events received after the corresponding window has been closed are known as late events. 
What can we do about them?

Sometimes, dropping these late events could be an option, but in many other cases, it 
is important for these events to be handled correctly. Most real-world streaming frame-
works provide mechanisms to handle these late events, but we will not go into more 
detail, as the handling is framework-specific. For now, the key takeaway is to keep these 
late events in mind and not forget about them.

Normally, all events should arrive within 1 second after they are 
created. A 1-second windowing watermark could be reasonable.

IoT sensor 
reader

Vehicle counter

Vehicle counter

Things can go wrong so that events 
might arrive later than the expected 
time and become late events.

IoT sensor 
reader

Vehicle counter

Vehicle counter
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Summary
Windowed computation is critical in streaming systems because it is the way to slice 
isolated events into event sets to process. In this chapter, we have discussed three stan-
dard windowing strategies widely supported by most streaming frameworks:

•	 Fixed windows

•	 Sliding windows

•	 Session windows

The basic support in streaming frameworks has its own limitations and may not work in 
many scenarios. Therefore, in addition to the concepts and how the streaming frame-
works handle the windowed operators, we have also learned how to use a key–value store 
to simulate a windowed operator and overcome the limitations.

At the end of the chapter, we also covered three related concepts that are important 
when solving real-world problems:

•	 Different times related to each event, including event time versus processing time

•	 Windowing watermarks

•	 Late events
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Exercise
1.	 At the beginning of the chapter, we mentioned that we have two ways to prevent 

fraudulent credit card transactions:

•	 We can block individual credit cards from being charged.

•	 We can block gas stations from processing any credit cards.

Afterward, we focused on detecting issues on individual credit cards but haven’t 
paid much attention to the second option. The exercise for you is: how can we 
detect suspicious gas stations, so we can block them from processing credit cards?
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If you have ever used any SQL (structured query language) database, most 
likely you have used, or at least learned about, the join clause. In the stream-
ing world, the join operation may not be as essential as it is in the database 
world, but it is still a very useful concept. In this chapter, we are going to 
learn how join works in a streaming context. We will use the join clause in 
databases to introduce the calculation and then talk about the details in 
streaming systems. If you are familiar with the clause, please feel free to 
skip the introduction pages.

In this chapter

•	 correlating different types of events in real time

•	 when to use inner and outer joins

•	 applying windowed joins

8Join operations

An SQL query goes into a bar, walks up to two tables, 

and asks, can I join you?

—Anonymous 
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Joining emission data on the fly
Well what do you know? The chief got lucky and fell into an opportunity of tracking the 
emissions of cars in Silicon Valley, California. Nice, right? 

Well, with every great opportunity comes challenges. The team is going to need to 
find a way to join events from vehicles in specific city locations along with the vehicles’ 
estimated emission rates on the fly. How will they do it? Let’s check it out. 

Each car in the city has been 

equipped with a sensor that emits 

car specific details and location 

every minute.

At the same time, each square unit on the 
map is being measured for air quality by 
sensors planted throughout each grid. We 
need to keep track of what vehicles are 
going through each zone.

I wonder what gotchas  
would show up while  

joining data in real time?
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The emissions job version 1
They have already implemented a first version of the emissions job. The interesting part 
of the job is the data store to the right of the emission resolver. It is a static lookup table 
used by the emission resolver to search for the emission data of each vehicle. Note that 
we assume that the vehicles with the same make, model, and year have the same emis-
sions in this system.

The vehicle event source accepts the 

events emitted from vehicles.

This data source here is a static 
reference that has emission 
data of different vehicles.

For each vehicle event, the 
emission resolver searches 
the Co

2
 emission data in the 

data store for the vehicle 
type <make, model, year>. 
The combined data will be 
emitted into the windowed 
aggregator.

The following aggregator 
groups all events by 
zone and then 
aggregates the total 
emission in the zone.

The results are all written  
to a database for further 
processing and/or analysis.

{
  time: ...... 
  make: ....,
  model: ....,
  year: ....,
  location: .....
}

{
  time: ....
  zone: .....,
  co2_emission: ....
}

{
  time: ....
  make: ....,
  model: ....,
  year: ....,
  zone: .....
}

Vehicle event
source

Emission
resolver

Windowed
aggregator
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class EmissionResolver extends Operator {
  private final Table emissionTable = ......;

  public void apply(Event event, EventCollector eventCollector) {
    VehicleEvent vehicleEvent = (VehicleEvent) event.getData();
    double emission = emissionTable.getEmission(
      vehicleEvent.make, vehicleEvent.model, vehicleEvent.year
    );

    eventCollector.add(
      new EmissionEvent(vehicleEvent.zone, emission)
    );
  }
}

The emission resolver
The key component in this job is the emission resolver. It takes 
a vehicle event, looks up the emission data for the vehicle in the 
data store, and emits an emission event, which contains the 
zone and emission data. Note that the output emission event 
contains data from two sources: the incoming vehicle event 
and the table.

Emission
resolver

Vehicle
Event Source

Windowed
Aggregator

{
  make: ....,
  model: ....,
  year: ....,
  zone: .....
}

{
  zone: .....,
  co2_emission: ....
}

This operator can be considered a very basic join operator, which combines data from 
different data sources based on related data between them (vehicle make, model, and 
year). However, the emission data is from a table instead of a stream. Join operators in 
streaming jobs take it one step further by providing real-time data.

Emission data is included in the 

output event.

Make Model Year Emission

XXX AA 2020 3.3

YYY CC 2021 4.2

... ... ... ...
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Accuracy becomes an issue
The job works OK in general, and it generates real-time emission data successfully. 
However, one important factor in the equation is missing: temperature (you know, CO

2
 

emission varies under different temperatures, and there are different seasons in 
California too). As a result, the emissions per zone reported by the system are not accu-
rate enough. It is too late to add a temperature sensor to the devices installed on each 
vehicle now, so it becomes the team’s challenge to solve in a different way.

We are having an accuracy problem that 
seems to be related to us not taking into 

account the current temperature.
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The enhanced emissions job
The team added another data source to bring current temperature events into the job for 
more accurate reporting. The temperature events are joined with the vehicle events using 
the zone id. The output emission events are then emitted to the emission resolver.

The temperature event source 
accepts temperature data 
from throughout the city.

The event joiner joins 

data from both data 

source streams in real 

time and emits vehicle-

temperature events.

Each zone in the city has been equipped 
with its own temperature sensor. Each 
sensor measures the temperature 
every 10 minutes, then reports a 
temperature event to the temperature 
event source.

{
  zone: .....,
  temperature: ....
}

Instead of vehicle 

events, the emission 

resolver now 

processes vehicle-

temperature events 

in the new version.

The old version

The new version

Vehicle event
source

Emission
resolver

Windowed
aggregator

Event
joiner

Emission
resolver

Windowed
aggregator

Vehicle event
source

Temperature
event source

Whoa whoa!  How are 
the two streams joined into 

one?
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Focusing on the join
The major changes in the new version are:

•	 The extra data source that accepts temperature events into the job

•	 The event joiner that combines two streams into one

The temperature event source works like normal sources, which are responsible for 
accepting data into stream jobs. The key change is the newly added event joiner operator, 
which has two incoming event streams and one outgoing event stream. Events arrive in 
real time, and it is really rare for the events from the streams to be perfectly synchro-
nized with each other. How should we make different types of events work together in 
the join operator? Let’s dig into it.

The vehicle event 
source receives  
data from vehicles in 
1-minute intervals.

The temperature 

event source receives 

events from sensors in 

10-minute intervals.

The event joiner combines 

the events in the two 

incoming streams into one 

outgoing event stream.

Event
joiner

Emission
resolver

Windowed
aggregator

Vehicle event
source

Temperature
event source

If everything is in real time, how 
do we correlate events from 

different times?

Maybe the events from different 
streams need to be synchronized in the 

join operator?
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What is a join again?
It’s probably natural to think of SQL when someone refers to a join operator. After all, 
join is a term that comes from the relational database world.

A join is an SQL clause where you take a certain number of fields from one table and 
combine them with another set of fields from another table, or tables, to produce con-
solidated data. The diagram below shows the join operator in terms of relational data-
bases; the streaming join is discussed in the following pages.

make model year zone

XXX AA 2020 3

YYY CC 2013 1

ZZZ DD 2017 2

XXX AA 2008 1

XXX BB 2014 1

ZZZ EE 2021 3

ZZZ EE 2018 5

zone temperature

1 95.4

2 94.3

3 95.1

4 95.2

5 95.3

The two tables have a common field: 

zone. It is the relationship between the 

tables.

Vehicle event table Temperature table

SELECT v.time, v.make, v.model, v.year, t.zone, t.temperature 
FROM vehicle_events v 
INNER JOIN temperature t on v.zone = t.zone;

The join results of the above 
tables could look like this.

make model year zone temperature

XXX AA 2020 3 95.1

YYY CC 2013 1 95.4

ZZZ DD 2017 2 94.3

XXX AA 2008 1 95.4

XXX BB 2014 1 95.4

ZZZ EE 2021 3 95.1

ZZZ EE 2018 5 95.3

Joined table
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How the stream join works
How can we make joins on data that is constantly moving and being updated? The key is 
to convert the temperature events into a table.

The vehicle event 
source receives  
data from vehicles  
in 1-minute intervals.

The temperature event 
source receives events 
from sensors in 10-minute 
intervals.

zoom in on the Event Joiner.

These temperature 
events are used to  
update the rows in the 
temperature table below.

Vehicle event
source

Temperature
event source

Event
joiner

1. As temperature events 
come in, they are either 
updating existing rows or 
added as new rows in the 
temperature table in  
real time. In other words, 
this table is an ever-
changing set of in-memory 
reference data. It is 
constantly updated by the 
temp events stream.

TAKE NOTE! This table is 

temporary (in memory only) 

and mutable.

3. Temperature 
data is added into 
the vehicle event.

{
  zone: 3
  temperature: 95.2
}

{
  make: XXX
  model: AA
  year: 2020,
  zone: 3
} zone temperature

1 95.4

2 94.3

3 95.2

4 95.2

5 95.2

{
  make: XXX,
  model: AA,
  year: 2020,
  zone: 3,
  temperature: 95.2
}

Event joiner

Vehicle event
source

Temperature
event source

Emission
resolver

2. Join the vehicle 
event with 
temperature 
table on zone.
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Stream join is a different kind of fan-in
In chapter 4, we discussed the fraud detection scenario where we aggregated the fraud 
scores from the upstream analyzers to help determine whether a transaction was fraudu-
lent or not. Is the score aggregator the same type of operator?

The answer is no. In the score aggregator, all the incoming streams have the same 
event type. The operator doesn’t need to know which stream each event is from, and it 
just applies the same logic. In the event joiner, the events in the two incoming streams 
are quite different and handled differently in the operator. The score aggregator is a 
merge operator, and the event joiner is a join operator. They are both fan-in operators.

The score aggregator was 

collecting results of 3 different 

upstream analyzers, but the 

analyzers emitted the same type 

of events. We consider this a 

merge.

In the event joiner,  
we are joining two 
different types of 
data together. This 
operator is  considered 
a join.

Vehicle event
source

Temperature
event source

Event
joiner

Average
ticket

analyzer

Score
aggregator

Average
ticket

analyzer

Average
ticket

analyzer

A more abstract view of merge: 
streams of data type A are 
combined together by a merge 
operator.

A more abstract view of join: 
streams of different types of 
data are joined together by a 
join operator.

Data A

Merge

Data A Data A Data A

Join

Data B
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Vehicle events vs. temperature events
Note that in the join operator, the temperature events are converted into the temporary 
temperature table, but the vehicle events are processed as a stream. Why convert the tem-
perature events instead of the vehicle events? Why not convert both streams into tables? 
These questions can be important 
when you build your own systems.

First, one outgoing event is expected 
for each incoming vehicle event. So it 
makes sense to keep the vehicle events 
flowing through the operator like a 
stream. Secondly, it could be more 
complicated to manage vehicle events 
as the lookup table.  There are many 
more vehicles than zones in the sys-
tem, so it would be much more expen-
sive to keep the vehicle events in a 
temporary in-memory table. Furthermore, only the latest temperature for each zone is 
important for us, but the vehicle event needs to managed (adding and removing) more care-
fully, since every event counts.

Anyway, let’s put the vehicle events into a table and then join them with the stream of 
temperature events. There will be multiple rows for each zone in the table, and the results 
will be event batches instead of individual events.

zone temperature

1 95.4

2 94.3

3 95.2

4 95.2

5 95.3

{
  make: XXX
  model: AA
  year: 2020,
  zone: 3
}

{
  make: XXX,
  model: AA,
  year: 2020,
  zone: 3,
  temperature: 95.2
}

make model year zone

XXX AA 2020 3

YYY CC 2013 1

XXX BB 2014 1

ZZZ EE 2021 3

{
  zone: 3,
  temperature: 95.2
}

2. One temperature 
event is received from 
each zone every 10 
minutes, and it is joined 
with the vehicle table.

3. Two rows in the vehicle 
table are found for the 
zone. They need to be 
removed afterwards.

{
  make: XXX,
  model: AA,
  year: 2020,
  zone: 3,
  temperature: 95.2
},
{
  make: ZZZ,
  model: EE,
  year: 2021,
  zone: 3,
  temperature: 95.2
}

4. Two result events 
of the join operator 
are emitted out. In 
the real world, there 
could be a lot more.

1. Each new 
Vehicle event is 
appended into 
the table.

{
  make: ZZZ
  model: EE
  year: 2021,
  zone: 3
}
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Table: A materialized view of streaming
We are going to be a little more abstract here: what is the relationship between the tem-
perature events and the temperature table? Understanding their relationship could be 
helpful for us to understand what makes the temperature events special and make better 
decisions when building new streaming systems.

One important fact about temperature data is that, at any moment, we only need to 
keep the latest temperature for each zone. This is because we only care about the latest 
temperature of each zone instead of the individual changes or the temperature history. 
The diagram belows shows the changes of the temperature table before and after two 
temperature events are received and processed.

Each temperature event is used to update the table to the latest data. Therefore, each 
event can be considered a change of the data in the table, and the stream of the events is 
a change log.

On the other end, when a join happens, the lookup is performed on the temperature 
table. At any moment, the temperature table is the result after all the events up to the 
specific point of time have been applied. Hence, the table is considered a materialized 
view of the temperature events. An interesting effect of a materialized view is that the 
event interval is not that important anymore. In the example, the interval of tempera-
ture events for each zone is 10 minutes, but the system would work the same way whether 
the interval is one second or one hour.

{
  zone: 3
  temperature: 95.0
}

zone temperature

1 95.4

2 94.3

3 95.1

4 95.2

5 95.3

zone temperature

1 95.4

2 94.3

3 95.0

4 95.2

5 95.3

zone temperature

1 95.4

2 94.3

3 95.0

4 95.2

5 95.3

{
  zone: 1
  temperature: 95.4
}

Two temperature events are 
received and used to update the 
temperature table.

time

Two rows in the table are updated after the two events are processed.
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Vehicle events are less efficient to be 
materialized
On the other hand, compared to the temperature events, the vehicle events are less effi-
cient to be materialized. Vehicles move around the city all the time, and every single 
vehicle event for the same vehicle needs to be included in the join instead of the latest 
one. As a result, the vehicle events table is basically a list of pending vehicle events to be 
processed. Plus, the number of vehicles is likely to be much greater than the number of 
zones normally. In conclusion, compared to the temperature events, the vehicle events 
are more complicated and less efficient to be materialized.

The diagram above shows the vehicle events are appended into the table instead of being 
used to update rows. While there are some things we can do to improve the efficiency, 
such as adding an extra count column and aggregating rows that have the same make, 
model, year, and zone instead of simply appending to the end of the table, it is quite 
clear that the temperature events are much more convenient to be materialized than the 
vehicle events. In real-world problems, this property could be an important factor to 
help decide how the streams should be handled if a join operator is involved.

A vehicle event is received and 
appended into the vehicle event 
table.

time

One more row is in the table after the vehicle event is processed. 

{
  make: ZZZ
  model: EE
  year: 2021,
  zone: 3
}

make model year zone

XXX AA 2020 3

YYY CC 2013 1

XXX BB 2014 1

make model year zone

XXX AA 2020 3

YYY CC 2013 1

XXX BB 2014 1

ZZZ EE 2021 3



198	 Chapter 8  I  Join operations

Data integrity quickly became an issue 

The emissions job worked great to help keep track of emissions throughout the area the 
team planned for. But guess what? People use applications in ways they weren’t meant to 
be used.

Un
ch
ar
te
d

Te
rr
it
or
y

Why does this issue happen, and how we can address the issue? We will need to look into 
different types of join operators.

The system is reporting a bunch 
of errors.

The vehicles are driving outside 
of the planned bounds. How can we 

account for this?
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What’s the problem with this join operator?
The key to this join operator is obtaining the temperature for a given zone. Let’s take a 
look at a table-centric representation of the operator below. In the diagram, each vehicle 
event is represented as a row in the table, but keep in mind that the vehicle events are 
processed one by one like a stream. Another important thing to keep in mind is that the 
the temperature table is dynamic, and the temperature values could change when new 
temperature events come in.

make model year zone

XXX AA 2020 3

YYY CC 2013 1

ZZZ DD 2017 2

XXX AA 2008 1

XXX BB 2014 1

ZZZ EE 2021 3

ZZZ EE 2018 5

YYY CC 2015 X

... ... ... ...

zone temperature

1 95.4

2 94.3

3 95.0

4 95.2

5 95.3

make model year zone temperature

XXX AA 2020 3 95.0

YYY CC 2013 1 95.4

ZZZ DD 2017 2 94.3

XXX AA 2008 1 95.4

XXX BB 2014 1 95.4

ZZZ EE 2021 3 95.0

ZZZ EE 2018 5 95.3

YYY CC 2015 X ???

... ... ... ...

Now, the data integrity issue is caused by a special case: the zone 7 in the last vehicle 
event is not in the temperature table. What should we do now? To answer this question, 
we need to discuss two new concepts first: inner join and outer join.

The zone of this vehicle event doesn’t exist in the temperature table.

Vehicle event stream
Temperature table

Outgoing stream

What should we do if a 
vehicle event comes in with an 

unknown zone?
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Inner join
Inner join processes only vehicle events that have matching zone in the temperature 
table.

The result! Note that there is no corresponding row in the result table for the last vehicle 
event, because zone X doesn’t exist in the 
temperature table.

make model year zone

XXX AA 2020 3

YYY CC 2013 1

ZZZ DD 2017 2

XXX AA 2008 1

XXX BB 2014 1

ZZZ EE 2021 3

ZZZ EE 2018 5

YYY CC 2015 X

... ... ... ...

zone temperature

1 95.4

2 94.3

3 95.0

4 95.2

5 95.3

make model year zone temperature

XXX AA 2020 3 95.0

YYY CC 2013 1 95.4

ZZZ DD 2017 2 94.3

XXX AA 2008 1 95.4

XXX BB 2014 1 95.4

ZZZ EE 2021 3 95.0

ZZZ EE 2018 5 95.3

... ... ... ...

If you look carefully at the above result of the join operator, you will see that there is no 
row in the result associated with zone 7. This is because inner joins only return rows of 
data that have matching values, and there is no zone 7 in the temperature table.

With inner join, emission in these unknown zones will be missed, since the vehicle 
events are dropped. Is this a desirable behavior?

Outgoing stream

Vehicle event stream

Temperature table
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Outer join
Outer joins differ from inner, as they include the matching and non-matching rows on a 
specified column or data. Therefore, no event will be missing, although there could be 
some incomplete events in the result.

The team decided to do an outer join to capture non-matching rows and handle them later.

If vehicle events are reported  

in zones without recorded 

temperatures, we would see a result 

similar to this. If this were an inner 

join, the last row would not be 

emitted. 

make model year zone

XXX AA 2020 3

YYY CC 2013 1

ZZZ DD 2017 2

XXX AA 2008 1

XXX BB 2014 1

ZZZ EE 2021 3

ZZZ EE 2018 5

YYY CC 2015 X

... ... ... ...

zone temperature

1 95.4

2 94.3

3 95.0

4 95.2

5 95.3

make model year zone temperature

XXX AA 2020 3 95.0

YYY CC 2013 1 95.4

ZZZ DD 2017 2 94.3

XXX AA 2008 1 95.4

XXX BB 2014 1 95.4

ZZZ EE 2021 3 95.0

ZZZ EE 2018 5 95.3

YYY CC 2015 X null

... ... ... ...

Vehicle event stream

Temperature table

Outgoing stream

With the outer join we 
have  a chance to handle 
the special case later.
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The inner join vs. outer join
Vehicle events that have no matching data in the temperature table are handled differ-
ently with inner and outer joins. Inner joins only return results that have matching val-
ues on both sides, but outer joins return results whether or not there is matching data.

make model year zone

XXX AA 2020 3

YYY CC 2013 1

ZZZ DD 2017 2

XXX AA 2008 1

XXX BB 2014 1

ZZZ EE 2021 3

ZZZ EE 2018 5

YYY CC 2015 X

... ... ... ...

zone temperature

1 95.4

2 94.3

3 95.0

4 95.2

5 95.3

make model year zone temperature

XXX AA 2020 3 95.0

YYY CC 2013 1 95.4

ZZZ DD 2017 2 94.3

XXX AA 2008 1 95.4

XXX BB 2014 1 95.4

ZZZ EE 2021 3 95.0

ZZZ EE 2018 5 95.3

YYY CC 2015 X null

... ... ... ...

make model year zone temperature

XXX AA 2020 3 95.0

YYY CC 2013 1 95.4

ZZZ DD 2017 2 94.3

XXX AA 2008 1 95.4

XXX BB 2014 1 95.4

ZZZ EE 2021 3 95.0

ZZZ EE 2018 5 95.3

... ... ... ...

Outgoing stream

Outgoing stream

Temperature table

Vehicle event stream

Inne
r j

oin

O
uter join
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Different types of joins
If you are familiar with the join clause in databases, you will remember that there are a 
few different types of outer joins: full outer joins (or full joins), left outer joins (or left 
joins), and right outer joins (or right joins). All join operators are included in the diagrams 
that follow to illuminate the differences in the context of an SQL database.

Temperaturevehicle
events

Temperaturevehicle
events

vehicle
events

Temperature vehicle
events

Temperature

Inner joins only return results that 
have matching values in both 
tables.

Full outer joins return all results 
in both tables.

Left outer joins return all results 
in the vehicle events table and 
only matching rows from the 
temperature table.

Right outer joins return all results 
in the temperature table and 
only matching rows from the 
vehicle events table.
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Outer joins in streaming systems
Now we know the inner and outer joins in SQL databases. Overall, things are pretty 
similar in the streaming world. One difference is that, in many cases (such as the CO

2
 

emission job), events in one of the incoming streams are processed one by one, while the 
other streams are materialized into tables to be joined. Usually, the special stream is 
treated as the left stream, and the streams to be materialized are the right streams. 
Therefore, the join used in the event joiner is a left outer join

With left outer join, the team can identify the vehicles that are moving outside of the 
planned area and improve the data integrity issue by filling in the average temperature 
into the resulting vehicle-temperature events instead of dropping them. The results are 
more accurate now.

Note that in more complicated (hence, interesting) cases, there could be more than one 
right stream, and different types of joins can be applied to them.

{
  make: YYY
  model: CC
  year: 2015,
  zone: X
}

zone temperature

1 95.4

2 94.3

3 95.0

4 95.2

5 95.3
{
  make: YYY,
  model: CC,
  year: 2015,
  zone: X,
  temperature: null -> 95.0
}

The special 
stream is 
typically the 
left stream.

The stream to 

be materialized 

is typically the 

right stream.

The null temperature in the 

outgoing event is replaced with 

the average temperature of the 

whole area.

Vehicle event
source

Temperature
event source

Emission
resolver
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A new issue: Weak connection
After fixing the data integrity issue, the team noticed another problem a few weeks later: 
some values in the temperature table look strange. After investigating, they found the 
root cause: one sensor has connection issues, and sometimes it reports temperature suc-
cessfully every few hours instead of every 10 minutes. The issue can be fixed by repairing 
the device and its connection, but at the same time, can we make the system more resil-
ient to the connection issues?

zone temperature

1 95.4

2 94.3

3 91.2

4 95.2

5 95.3

The connection of this 
sensor is not reliable, and 
this temperature value  
in the table is outdated 
because it hasn’t been 
updated for a few hours. 

In general, streaming systems have to 
account for the possibility that some of 
their event sources might be unreliable.
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Windowed joins
A new concept can be very helpful for making the job handle the unreliable connection 
issue: windowed joins. The name explains itself well: a windowed join is an operator that 
combines both windowing and join. In the previous chapter, we discussed windowed 
computation in detail. The details are not required here, so don’t worry if you picked this 
chapter to read first.

With windowed joins, the job works similarly to the original version: the vehicle 
events are handled one by one, and the temperature events are materialized into a lookup 
table. However, the materialization of the temperature events is based on a fixed time 
window instead of the continuous events. More specifically, temperature events are col-
lected into a buffer first and materialized into an empty table as a batch every 30 min-
utes. If all the sensors report data successfully in the window, the calculation should 
work just fine. However, in case no temperature event is received from a sensor within 
the window, the corresponding row in the lookup table will be empty, and the event 
joiner can then estimate the current value from the neighbor zones. In the diagram 
below, the temperatures in zone 2 and 4 are used to estimate the temperature of zone 3. 
By using a windowed join, we can make sure all the temperature data in the table is 
up-to-date.

By changing from a continuous materialization to a window-based materialization, we 
sacrifice the latency of temperature changes a little (temperatures are updated every 30 
minutes instead of 10 minutes), but in return, we get a more robust system that can 
detect and handle some unexpected issues automatically.

{
  make: XXX
  model: AA
  year: 2020,
  zone: 3
} zone temperature

1 95.4

2 94.3

3 94.8

4 95.2

5 95.3

{
  make: XXX,
  model: AA,
  year: 2020,
  zone: 3,
  temperature: 94.8
}

If no temperature event is 
received from zone 3 in the 
30-minute window, this 
temperature value is an 
estimation based on the 
temperatures of zones 2  
and 4.

All incoming temperature 
events are put into this 
buffer first and 
materialized into a new 
table every 30 minutes.
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Joining two tables instead of joining a stream 
and table
Before wrapping up the chapter, as an example, let’s take a look at the option in which 
both streams are converted to tables first and then the two tables are joined together 
using the CO

2
 emission monitor system. With this solution, the overall process in the 

component has two steps: materialization and join. First, the two incoming streams are 
materialized into two tables. Then, the join logic is applied on the tables, and the results 
are emitted out to the downstream components. Usually, windowing is used in the 
materialization step, and the join operation is very similar to the join clause in SQL data-
bases. Note that a different windowing strategy can be applied to each incoming stream.

Because the overall process is rather standard, developers can focus on the join calcula-
tion without worrying about handling streams differently. This could be an advantage 
when building more complicated join operators; hence, this option is important to know. 
On the other hand, the latency might not be ideal because the events are processed in 
small batches instead of continuously. Remember that it is up to the developers to choose 
the best option according to the requirements.

make model year zone

XXX AA 2020 3

YYY CC 2013 1

XXX BB 2014 1

ZZZ EE 2021 3

1. The vehicle events in 
the window are added 
as rows in the vehicle 
table.

zone temperature

1 95.4

2 94.3

3 95.0

4 95.2

5 95.3

Join

2. The temperature events 
are materialized to the 
temperature table.

3. The join is triggered after the 
two tables are available. The 
results are then emitted to the 
downstream component.

Emission
resolver

Vehicle event
source

Temperature
event source
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Revisiting the materialized view
We have discussed that the temperature events 
are more efficient to be materialized than the 
vehicle events, and we have also discussed that, 
typically, the events in one special stream are 
processed one by one, and the other streams are 
materialized into temporary tables, but we can 
also materialize all streams and join the tables. 
I bet some curious readers will ask: can we join 
with the raw temperature events instead of the 
materialized view?

Let’s try to keep all the temperature events as 
a list and avoid the temporary table. To avoid 
running out of memory, we will drop the temperature events that are older than 30 min-
utes. For each vehicle event, we need to search for the last temperature of the zone in the 
temperature list by comparing the zone id in the vehicle event with the zone id of each 
temperature in the list. The final results will be the same, but with a lookup table which 
could be a hash map, a binary search tree, or a simple array with the zone id as the index, 
the searching would be much more efficient. From the comparison, we can tell that the 
materialized view can be considered an optimization. In fact, the materialized view is a 
popular optimization pattern in many data processing applications. 

{
  zone: 3
  temperature: 95.0
}

zone temperature

1 95.4

2 94.3

3 95.0

4 95.2

5 95.3

Since it is an optimization, we can be more creative about how to manage the events if 
there are ways to make the operator more efficient. For example, in the real world a lot 
more information, such as noise level and air quality, can be collected by these sensors. 
Because we only care about the real-time temperature in each zone in this job, we can 
drop all other information and only extract the temperature data from the events and 
put them into the temporary lookup table. In your systems, if it makes your jobs more 
efficient, you can also try to create multiple materialized views from a single stream or 
create one materialized view from multiple streams to build more efficient systems.

The materialized view is a popular 
pattern to optimize data processing 
applications.
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Summary
In this chapter, we discussed the other type of fan-in operator: join. Similar to merge 
operators, join operators have multiple incoming streams. However, instead of applying 
the same logic to all events from different streams, events from different streams are 
handled differently in join operators.

Similar to the join clause in SQL databases, there are different types of joins. 
Understanding the joins is important for solving the data integrity issue:

•	 Inner joins only return results that have matching values in both tables.

•	 Outer joins return results whether or not there is matching data in both tables. 
There are three types of outer joins: full outer joins (or full joins), left outer joins 
(or left joins), and right outer joins (or right joins).

In the CO
2
 emission monitoring system, the vehicle events are processed like a stream, 

and the temperature events are used as a lookup table. A table is a materialized view of a 
stream. At the end of the chapter, we also learned that windowing can be used together 
with join and a different option to build join operators: materializing all the incoming 
streams into tables and then joining them together.
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Be prepared for unexpected events is a critical rule when building any dis-
tributed systems, and streaming systems are not exceptions. In this chapter, 
we are going to learn a widely supported failure handling mechanism in 
streaming systems: backpressure. It is very useful for protecting a streaming 
system from breaking down under some unusual scenarios.

In this chapter

•	 an introduction to backpressure

•	 when backpressure is triggered

•	 how backpressure works in local and  

distributed systems

9Backpressure

Never trust a computer you can’t throw out a window.

—Steve Wozniak
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Reliability is critical
In chapter 4, the team built a stream processing system to process transactions and 
detect credit card fraud. It works well, and customers are happy so far. However, the chief 
has a concern—a very good one.

Since Money is involved we have to be 
super careful. Has anyone ever 

considered the reliability of our system? 
What will happen in unexpected scenarios, 

such as a computer reboot?
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Review the system
Before moving forward, let’s review the structure of the system to refresh our memory.

1. API gateway accepts 

transactions and forwards 

requests to a transaction 

presenter and a fraud 

detection job.

5. The presenter combines the 
transaction from the API 
gateway and the fraud score 
from the database and presents 
the result to the paying bank.

2. Transaction source 
fans out a single 
transaction to 
multiple downstream 
analyzer components.

3. Each analyzer executes its own logic and creates a score. 4. The score aggregator aggregates 

a total fraud score for each 

transaction and writes the score to 

the database.

 API 
gateway

transaction
presenter

transaction
source

average 
ticket

analyzer

windowed
proximity 
analyzer

windowed
txn count 
analyzer

score 
aggregator
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Streamlining streaming jobs
The reason streaming systems are increasingly being used is the need for on-demand 
data, and on-demand data can be unpredictable sometimes. Components in a streaming 
system or a dependent external system, such as the score database in the diagram, might 
not be able to handle the traffic, and they also might have their own issues occasionally. 
Let’s look at a few potential issues that could arise in the fraud detection system.

After all, failure handling is an important topic in all dis-
tributed systems, and our fraud detection system is no 
different. Things can go wrong, and some safety nets are 
important for preventing problems from arising.

What if instances fall 
behind or crash?

Noodle on it

The data transfer might be 

slowed down because of 

network issues.

The number of transactions may suddenly increase, and the transaction source may not be able to keep up with it.

The score aggregator  
could take longer writing 
transactions to the database.

Each of the fraud 
detection analyzers 
could fall behind in 
running their function 
or even crash.

A computer that some 
instances run on could have 
hardware failure and 
replaced with a new one.

transaction
source

average 
ticket

analyzer

windowed
proximity 
analyzer

windowed
txn count 
analyzer

score 
aggregator
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New concepts: Capacity, utilization, 
and headroom
Familiarize yourself with these related concepts, which will be helpful in discussing 
backpressure:

•	 Capacity is the maximum number of events an instance can handle. In the real 
world, capacity is not that straightforward to measure; hence, CPU and memory 
utilization are often used to estimate the number. Keep in mind that in a 
streaming system, the number of events that various instances can handle could 
be very different.

•	 Capacity utilization is a ratio (in the form of a percentage) of the actual number 
of events being processed to the capacity. Generally speaking, higher capacity 
utilization means higher resource efficiency.

•	 Capacity headroom is the opposite of capacity utilization—the ratio represents 
the extra events an instance can handle on top of the current traffic. In most 
cases, an instance with more headroom could be more resilient to unexpected 
data or issues, but its efficiency is lower because more resources are allocated but 
not fully used.

For example, if the maximum number of events this 
instance can handle is 10,000 events per second. the 
10,000 events per second  (or EPS) is the capacity of 
the instance. Assuming the instance is processing 
7,500 events per second currently, the current 
capacity utilization is 75% and the instance has a 
headroom of 25%.

Instance executor
Average
ticket

analyzer

Event
dispatcher

Instance executor
Average
ticket

analyzer

Instance executor
Score

aggregator

Instance executor
Score

aggregator

Instance executor
Score

aggregator
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More about utilization and headroom
In real-world systems, something unexpected could occasionally happen, causing the 
capacity utilization to spike. For example:

•	 The incoming events could suddenly spike from time to time.

•	 Hardware could fail, such as a computer restarting because of a power issue, and 
the network performance might be poor when bandwidth is occupied by 
something else.

It is important to take these potential issues into consideration when building distrib-
uted systems. A resilient job should be able to handle these temporary issues by itself. In 
streaming systems, with enough headroom, the job should be running fine without any 
user intervention.

However, headroom can’t be unlimited (plus, it is not free). When utilization capacity 
reaches 100%, the instance becomes busy, and backpressure is the next front line.

•	 In a streaming job, the headroom could be different from one instance to 
another. Generally speaking, the headroom of a component is the minimal 
headroom of all the instances of the component; and the headroom of a job is 
the minimal headroom of all the instances in the job. Ideally, the capacity 
utilization of all the instances in a job should be at a similar level.

•	 For critical systems, like the fraud detection system, it’s a good practice to 
have enough headroom on every instance, so the job is more tolerant to 
unexpected issues.
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The headroom of 
the instance

The current capacity 
utilization

The instance handles a temporary utilization spike fine 
because of the headroom.
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New concept: Backpressure
When the capacity utilization reaches 100%, things 
become more interesting. Let’s dive into it using the 
fraud detection job as an example.

When the instance becomes busy and can’t catch up with the incoming traffic, its incom-
ing queue is going to grow and run out of memory eventually. The issue will then prop-
agate to other components, and the whole system is going to stop working. Backpressure 
is the mechanism to protect the system from crashing.

Backpressure, by definition, is a pressure that is opposite to the data flowing direc-
tion—from downstream instances to upstream instances. It occurs when an instance 
cannot process events at the speed of the incoming traffic, or, in other words, when the 
capacity utilization reaches 100%. The goal of the backwards pressure is to slow down the 
incoming traffic when the traffic is more than the system can handle.

The dispatcher 
moves events 
between queues.

3. All instances of the score 

aggregator process the 

events normally, except  

the last instance is having 

issues and processing 

events at a lower speed.

Instance
executor

Instance
executor

Instance
executor

Instance
executor

Instance
executor

4. Some time passes ......

5. Because the downstream 
instance lags behind, the 
intermediate queue backs up 
with events to be processed. 
Backpressure needs to kick in.

Instance
executor

Instance
executor

Instance
executor

Instance
executor

Instance
executor

average 
ticket

analyzer

score 
aggregator

2. The events in the 
queues are waiting to 
be processed.

1. Instances of the 

analyzer emit events
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Measure capacity utilization
Backpressure should trigger when the capacity utilization reaches 100%, but capacity 
and capacity utilization are not very easy to measure or estimate. There are many factors 
that determine the limit of how many events an instance can handle, such as the resource, 
the hardware, and the data. CPU and memory usage is useful but not very reliable for 
reflecting capacity, either. We need a better way; luckily, there is one.

We have learned that a running streaming system is composed of processes and event 
queues connecting them. The event queues are responsible for transferring events 
between the instances, like the conveyor belts between workers in an assembly line. 
When the capacity utilization of an instance reaches 100%, the processing speed can’t 
catch up with the incoming traffic. As a result, the number of events in the incoming 
queue of the instance starts to accumulate. Therefore, the length of the incoming queue 
for an instance can be used to 
detect whether the instance has 
reached its capacity.

 Normally, the length of the 
queue should go up and down 
within a relatively stable range. 
If it keeps growing, it is very 
likely the instance has been too 
busy to handle the traffic.

After too many events are accumulated in the queue, a backpressure 
event should happen to “slow down” events from the upstream 
components.

In the next few pages, we will discuss backpressure in more detail with our local 
Streamwork engine first to get some basic ideas, then we will move to more general dis-
tributed frameworks.

Note that backpressure is especially useful for the temporary issues, such as instances 
restarting, maintenance of the dependent systems, and sudden spikes of events from 
sources. The streaming system will handle them gracefully by temporarily slowing down 
and resuming afterwards without user intervention. Therefore, it is very important to 
understand what backpressure can and cannot do, so when system issues happen, you 
have things under control without being panicky.

Instance
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Instance
executor

Instance
executor

Instance
executor

Instance
executor
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Backpressure in the Streamwork engine
Let’s start from our own Streamwork engine first, since it is more straightforward. As a 
local system, the Streamwork engine doesn’t have complicated logic for backpressure. 
However, the information could be helpful for us to learn backpressure in real frame-
works next.

In the Streamwork engine, blocking queues (queues that can suspend the threads that 
try to append more events when the queue is full or take elements when the queue is 
empty) are used to connect processes. The lengths of the queues are not unlimited. There 
is a maximum capacity for each queue, and the capacity is the key for backpressure. 
When an instance can’t process events fast enough, the consuming rate of the queue in 
front of it would be lower than the insertion rate. The queue will start to grow and 
become full eventually. Afterward, the insertion will be blocked until an event is con-
sumed by the downstream instance. As the result, the insertion rate will be slowed down 
to the same as the event processing speed of the downstream instance.

In the Streamwork, 
blocking queues with a 
specified capacity are 
used to connect processes.  

1. The last instance 

of the component 

can’t keep up with 

the incoming 

traffic.

2. When this queue is full, the incoming transactions will be blocked until the downstream instance consumes more elements from the queue. As a result, the processing speed of the event dispatcher process is slowed down to the speed of the slow instance.
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Backpressure in the Streamwork engine: 
Propagation
Slowing down the event dispatcher isn’t the end of the story. After the event dispatcher is 
slowed down, the same thing will happen to the queue between it and the upstream 
instances. When this queue is full, all the instances of the upstream component will be 
affected. In the diagram below, we need to zoom in a little more than normal to see the 
blocking queue in front of the event dispatcher that is shared by all the upstream 
instances.

When there is a fan-in in front of this component, which means there are multiple direct 
upstream components for the downstream component, all these components will be 
affected because the events are blocked to the same blocking queue.

1. when it is full, this queue will block the 

incoming events from the upstream instances.

2. The processing 

speed of the 
upstream instances is 

slowed down as a 

result.

Instance
executor

Instance
executor

Instance
executor

Instance
executor

Instance
executor

When there are 

multiple upstream 

components, the 

instances of all of 

them will be slowed 

down because all of 

them emit events to 

the same blocking 

queue.
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Our streaming job during a backpressure
Let’s look at how the fraud detection job is affected by backpressure with our Streamwork 
engine when one score aggregator instance has trouble catching up with the incoming 
traffic. At the beginning, only the score aggregator runs at a lower speed. Later, the 
upstream analyzers will be slowed down because of the backpressure. Eventually, the 
backpressure will bog down all your processing power, and you’ll be stuck with an 
underperforming job until the issue goes away.
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A few seconds later

1. The job starts out as normal, but the score aggregator runs slower than the other components.

The wavy lines 

represent 

backpressure 

occurring 

between two 

components.

2. Since the score aggregator is 

falling behind, backpressure starts 

to build between it and its 

immediate upstream components, 

and the upstream components are 

slowed down at some point.

3. Eventually backpressure will 

spill over the analyzer 

components and reach the 

source. The incoming data is 

slowed down.
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Backpressure in distributed systems
Overall, it is fairly straightforward in a local system to detect and handle backpressure 
with blocking queues. However, in distributed systems, things are more complicated. 
Let’s discuss these potential complications in two steps:

1.	 Detecting busy instances

2.	 Backpressure state

Detecting busy instances
As the first step, it is important to detect busy instances, so the systems can react proac-
tively. We mentioned in chapter 2 that the event queue is a widely used data structure in 
streaming systems to connect the processes. Although normally unbounded queues are 
used, monitoring the size of the queues is a convenient way to tell whether an instance 
can keep up with the incoming traffic. More specifically, there are at least two different 
units of length we can use to set the threshold:

•	 The number of events in the queue

•	 The memory size of the events in the queue

When the number of events or the memory size reaches the threshold, there is likely an 
issue with the connected instance. The engine declares a backpressure state.

1. If the system allows for a max capacity of 6 elements, since we are already at 6, the job enters a state of backpressure.

2. Or, if the system allows for a 

threshold of 1 kilobyte and the 6 

elements occupy 1 kilobyte or more  

in memory, the job enters the 

backpressure state.
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Backpressure state
After a backpressure state is declared, similar to the Streamwork engine, we would want 
to slow down the incoming events. However, this task could often be much more com-
plicated in distributed systems than in local systems, because the instances could be 
running on different computers or even different locations. Therefore, streaming frame-
works typically stop the incoming events instead of slowing them down to give the busy 
instance room to breathe temporarily by:

•	 Stopping the instances of the upstream components, or

•	 Stopping the instances of the sources

Although much less popular, we would also like to cover another option later in this 
chapter: dropping events. This option may sound undesirable, but it could be useful 
when end-to-end latency is more critical and losing events is acceptable. Basically, 
between the two options, there is a tradeoff between accuracy and latency.

The two options are explained in the diagram below. We’ve added a source instance 
to help with explanations, and left out the details of some intermediate queues and event 
dispatchers for brevity.

We can Stop the instances of the source or the 
upstream components, until the accumulated 
events in the full queue are drained.

If it is acceptable, events can be dropped when they are pushed into the queue if the queue is reaching the 
threshold.
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Slowing down traffic with a blocking 
queue is convenient in local systems, but the 

task is more challenging in distributed 
systems.
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Backpressure handling: Stopping the sources
Performing a stop at the source component is probably the most straightforward way to 
relieve backpressure in distributed systems. It allows us to drain the incoming events to 
the slow instance as well as all other instances in a streaming job, which could be desir-
able when it is likely that there are multiple busy instances.

1. With backpressure occurring here, we need to relieve it.

2. We can temporarily stop 
the source from emitting 
any additional transactions 
into the job by sending a 
special message to all the 
instances of the source 
component.

3. With the source temporarily 
stopped, all downstream 
components will be able to finish 
processing all transactions 
traversing the job, thus relieving 
the backpressure.
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Backpressure handling: Stopping the upstream components
Stopping the incoming event could also be implemented at the component level. This 
would be a more fine-grained way (to some extent) than the previous implementation. 
The hope is that only specific components or instances are stopped instead of all of 
them and that the backpressure can be relieved before it is propagated widely. If the 
issue stays long enough, eventually the source component will still be stopped. Note 
that this option can be relatively more complicated to implement in distributed sys-
tems and has higher overhead.

1. With backpressure occurring here, we need to relieve it.

2. At the component level, we 
would stop all three of the 
analyzer components from 
taking new events from the 
source and emitting results to 
the score aggregator component.
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Relieving backpressure
After a job is in a backpressure state for a while and the busy instance has recovered 
(hopefully), the next important question is: what is the end of a backpressure state, so the 
traffic can be resumed?

The solution shouldn’t be a surprise, as it is very similar to the detection step: moni-
toring the size of the queues. Opposite to the detection in which we check whether the 
queue is too full, this time we check whether the queue is empty enough, which means the 
number of events in it has decreased to be below a low threshold, and it has enough room 
for new events now.

Note that relieving doesn’t mean the slow instance has recovered. Instead, it simply  
means there is room in the queue for more events.

Here, one important fact to keep in mind is that backpressure is a passive mechanism 
designed for protecting the slow instance and the whole system from more serious prob-
lems (like crashing). It doesn’t really address any problem in the slow instance and make 
it run faster. As a result, backpressure could be triggered again if the slow instance still 
can’t catch up after the incoming events are resumed. We are going to take a closer look 
at the thresholds for detecting and relieving backpressure first and then discuss the 
problem afterward.

When the downstream instance has drained enough events and the size of the queue has decreased to a low threshold (<=2 elements in this example), the stopped components can be resumed.

Note that it is possible that the 

issue may still be there when the 

backpressure is relieved.
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New concept: Backpressure watermarks
The sizes of the intermediate queues are examined and compared with the thresholds for 
the declaration and relieving of the backpressure state. Let’s take a closer look at these 
two thresholds together with a new concept: backpressure watermarks. They are typically 
the configurations provided by streaming frameworks:

•	 Backpressure watermarks represent the high and low utilizations of the 
intermediate queues between the processes.

•	 When the size of the data in a queue is higher than the high backpressure 
watermark, backpressure state should be declared if it hasn’t been already.

•	 When a backpressure is present, and the size of the data in the queue that 
triggered backpressure is lower than the low backpressure watermark, the 
backpressure can be relieved. Note that it is not ideal for this low backpressure 
watermark to be zero because that means the previously busy instance won’t 
have work to do between the relieving of backpressure and new events reaching 
the queue.

The data sizes in the queues go up and down when a job is processing events. Ideally, the 
numbers are always between the low and high backpressure watermarks, so the events 
are processed in full speed.

This vertical scale 
represents data in an 
intermediate queue. For 
example, let’s say 100 MB is 
the upper bound. Typically this 
upper bound is a soft limit, 
which means it is possible for 
the data size to be greater 
than the limit in extreme 
cases, although it is not ideal.

If the data size reaches the high 

backpressure watermark, for 

example, 80 MB (80% of the full 

capacity) or above, backpressure is 

declared as the queue is “almost 

full.”

During backpressure, if the data 

size reaches the low watermark,  

for example, 20MB (20% of the full 

capacity) or below, the backpressure 

can be relieved as the queue is 

“almost empty.”

Note that an empty 

queue is not ideal 

since it is likely that 

the downstream 

instance spends a lot 

of time waiting for 

events to process.
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Another approach to handle lagging 
instances: Dropping events
Backpressure is useful for protecting systems and keeping things running. It works well 
in most cases, but in some special cases you also have another option: simply dropping 
events.

In this approach, when a lagging instance is detected, instead of stopping and resum-
ing the incoming events, the system would just discard the new events emitted into the 
incoming queue of the instance.

The option might sound scary because the results will be inaccurate. You are definitely 
right about that. If you remember the delivery semantics we talked about in chapter 5, 
you will notice that this option should only be used in the at-most-once cases.

However, it may not be as scary as it sounds. The results are inaccurate only when an 
instance can’t catch up with the traffic, which should be rare if the system is configured 
correctly. In other words, the results should be accurate almost all the time. We have 
mentioned a few times that backpressure is a self-protection mechanism for the extreme 
scenarios to prevent the systems from crashing. The backpressure state is not an ideal 
state for streaming jobs. If it happens too often to your streaming job, you should take 
another look at the system and try to find the root causes and address them.

If this queue has too many events already, new events to it will simply be dropped.
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Why do we want to drop events?
Why would we ever want to throw away an event in a system? You are not alone if you are 
wondering. Well, that’s a question to definitely ask yourself when designing your jobs: 
are you willing to trade away accuracy for end-to-end latency in case any instance fails 
to catch up with the work load?

Let’s take social media platforms as an example and track the number of user interac-
tions, such as likes, in real time. With the second option, the count is always the latest, 
although it is not 100% accurate. In the case that 1 instance in 100 is affected, we can 
expect the error to be less than 1%. If backpressure is applied to stop events, the count will 
be accurate, but you won’t get the latest count during the backpressure state, because the 
system is slowed down. After the backpressure state is relieved, it also needs time to catch 
up to the latest events. In the case that the issue is permanent, you won’t have the latest 
count until the issue is addressed, which could likely be worse than the < 1% error. Basically, 
with the dropping events approach, you get a more real-
time system with likely accurate enough results.

Back to the fraud detection job—the dead-
line is critical to us. Pausing the data process-
ing for a few minutes and missing the 
deadline until the backpressure is addressed 
would not be acceptable to us. Comparatively 
speaking, it may be more desirable to keep the 
process going without delay, although the accuracy 
is sacrificed slightly. Engineers should definitely be notified, so 
the underlying issue is investigated and fixed as soon as possible. 
Monitoring the number of dropped events is critical for us to under-
stand the current state and the accuracy level of the results.

Event dropping is a 
common design consideration 

when you’re balancing the tradeoff 
between accuracy and overall 

latency.
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Backpressure could be a symptom when the 
underlying issue is permanent
Backpressure is an important mechanism in streaming systems for handling temporary 
issues, such as instance crashing and sudden spikes of the incoming traffic, to avoid 
more serious problems. The streaming systems can resume a normal state automatically 
after the underlying issue is gone without user intervention. In other words, with back-
pressure, the stream systems are more resilient to unexpected issues, which is generally 
desirable in distributed systems. In theory, it would be ideal if backpressure never hap-
pened in a streaming system, but as you well know, life is not perfect, and it never will be. 
Backpressure is a necessary safety net.

While we hope that the issue is temporary and backpressure can handle it for us, it all 
depends on the underlying situation. It is totally possible that the instance won’t recover  
by itself and owners’ interventions will be required to take care of the root cause. In these 
cases, permanent backpressure becomes a symptom. Typically, there are two permanent 
cases that should be treated differently:

•	 The instance simply stops working, and backpressure will never be relieved,

•	 The instance is still working, but it can’t catch up with the incoming traffic. 
Backpressure will be triggered again soon after it is relieved.

Instance stops working, so backpressure won’t be relieved
In this case, no events will be consumed from the queue, and the backpressure state will 
never be relieved at all. This is relatively straightforward to handle: fixing the instance. 
Restarting the instance could be an immediate remediation step, but it could be import-
ant to figure out the root cause and address accordingly. Often, the issue leads to bugs to 
be fixed.

Instance can’t catch up, and backpressure will be triggered again
It is more interesting when an instance can’t 
catch up with the traffic. In this case, the 
data processing can resume temporarily 
after the data in the queue has been 
drained, but backpressure will be 
declared again soon. Let’s take a closer 
look at this case.

Backpressure is efficient for 
temporary issues but not for 

permanent issues.



	 Stopping and resuming may lead to thrashing if the issue is permanent� 231

Stopping and resuming may lead to 
thrashing if the issue is permanent
Now, let’s take a look at an effect that we will term thrashing. If the underlying issue is 
permanent, when the job declares a state of backpressure, the events in the queues are 
drained by all instances; then, as soon as the backpressure state is relieved, as new data 
events flood the instance once again, the state is declared again shortly. Thrashing is a 
cycle of declaring and relieving backpressure.

Thrashing is expected if the situation doesn’t change. If the same instance still can’t 
catch up with the traffic, the data size in the queue will increase again until it reaches the 
high watermark and triggers a backpressure again. And after the next time the backpres-
sure is relieved, it is likely to happen again. The number of events in the incoming queue 
of the instance looks like the chart above. To recover from a thrashing, we need to find 
the root cause and address it.
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Handle thrashing
If you see the thrashing, you will likely need to consider why the instance doesn’t process 
fast enough. For example, is there an internal issue that makes the instance slow down, 
or is it time to scale up your system? Typically, this kind of issue comes from two 
sources—the traffic and the components:

•	 The event traffic from the source might have increased permanently to a level 
that is more than the job can handle. In this case, it is likely the job needs to be 
scaled up to handle the new traffic. More specifically, the parallelisms (the 
number of instances of a specific component—read chapter 3 for more details)  
of the slow components in the job may need to be increased as the first step.

•	 The processing speed of some components could be slower than before for some 
reason. You might need to look into the components and see if there is something 
to optimize or tune. Note that the dependencies used by the components should 
be taken into consideration as well. It is not rare that some dependencies can run 
slower when the pattern of traffic changes.

It is important to understand the data and the system
Backpressure occurs when an instance can’t process events at the speed of the incoming 
traffic. It is a powerful mechanism to protect the system from crashing, but it is import-
ant for you, the owner of the systems, to understand the data and the systems and figure 
out what causes backpressure to be triggered. Many issues might happen in real-world 
systems, and we can’t cover all of them in this book. Nevertheless, we hope that under-
standing the basic concepts will be helpful for you to start your investigation in the right 
direction.

Backpressure is important for the 
systems to be more resilient,  but it is 
more important for us to understand 

the root causes.
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Summary
In this chapter, we discussed a widely supported mechanism: backpressure. More 
specifically:

•	 When and why backpressure happens

•	 How stream frameworks detect issues and handle them with backpressure

•	 Stopping incoming traffic or dropping events—how they work and the tradeoffs

•	 What we can do if the underlying issues don’t go away.

Backpressure is an important mechanism in stream systems. We hope and believe that 
understanding the details about it could be helpful for you to maintain and improve 
your systems.
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In this chapter

•	 an introduction to stateful and stateless components

•	 how stateful components work

•	 related techniques

10Stateful computation

We talked about state in chapter 5. In most computer programs, it is an 
important concept. For example, the progress in a game, the current con-
tent in a text editor, the rows in a spreadsheet, and the opened pages in a 
web browser are all states of the programs. When a program is closed and 
opened again, we would like to recover to the desired state. In streaming 
systems, handling states correctly is very important. In this chapter, we are 
going to discuss in more detail how states are used and managed in stream-
ing systems.

Have you tried turning it off and on again?

—The IT Crowd
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The migration of the streaming jobs
System maintenance is part of our day-to-day work with distributed systems. A few  
examples are: releasing a new build with bug fixes and new features, upgrading software 
or hardware to make the systems more secure or efficient, and handling software and 
hardware failures to keep the systems running.

AJ and Sid have decided to migrate the streaming jobs to new and more efficient hard-
ware to reduce cost and improve reliability. This is a major maintenance task, and it is 
important to proceed carefully.

Is it risky to migrate the stream 
jobs to the new machines? Will the 

results be affected during the 
migration?

The results shouldn’t be affected during 
the migration. Components are implemented as 
stateful components when needed. When the 
instances are killed on the old machines and 

restarted on the new machines, they will resume 
to their previous states automatically.
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Stateful components in the system usage job
Stateful components are very useful for the components that have internal data. We 
talked about them briefly in chapter 5 in the context of the system usage job. It is time 
take a closer look now and see how they really work internally.

The transaction source instances read events 

from the event log. The offsets that each 

instance is reading from in the event log are the 

states to be stored and restored.

The system usage analyzer counts the 

transactions in the past minute. The counts 

need to be restored after a restart.

The usage writer is responsible for database 

access, and it doesn’t have a state to restore in 

the current implementation. It is a stateless 

component.

The data 
source 
(event log)

transaction
source

system
usage

analyzer

usage
writer

API
gateway

In order to resume the processing after a streaming job is restarted, each instance of a 
component needs to persist its key internal data, the state, to external storage beforehand 
as a checkpoint. After an instance is restarted, the data can be loaded back into memory 
and used to set up the instance before resuming the process.

The data to persist varies from component to component. In the system usage job:

•	 The transaction source needs to track the processing offsets. The offsets denote 
the positions that the transaction source component is reading from the data 
source (the event log).

•	 The transaction counts are critical for the system usage analyzer and need to be 
persisted.

•	 The usage writer doesn’t have any data to save and 
restore.

Therefore, the first two components need to be imple-
mented as stateful components, and the last one is a stateless 
component.

We have discussed stateful components 
briefly in previous chapters. They are 
needed at a few places in our streaming job.
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Revisit: State
Before going deeper, let’s pause here and revisit a very basic concept: what is a state? As 
we explained in chapter 5, state is the internal data inside each instance that changes 
when events are processed. For example, the state of the transaction source component 
is where each instance is loading from the data source (aka the offset). The offset moves 
forward after new events are loaded. Let’s look at the state changes of a transaction source 
instance before and after two transactions are processed.

Time

{
  offset = 100
}

{
  offset = 101
}

{
  offset = 102
}

The initial state before 
transaction 1 and 2 are processed.

The state changes after 

transaction 1 is processed.

The state changes again after 

transaction 2 is processed.

Transaction 1 is 
loaded from 
data source.

Transaction 2 
is loaded from 
data source.
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The states in different components
Things become interesting when we look at states in different components together. In 
chapter 7 about windowed computation, we said that the processing time of an event is 
different for different instances because the event flows from one instance to another. 
Similarly, for the same event, in different instances, the state changes happen at different 
times. Let’s look at the state changes of a transaction source instance and a system usage 
analyzer instance together before and after two transactions are processed.

Time

{
  offset = 100
}

{
  count = 1000
}

{
  offset = 101
}

{
  count = 1001
}{

  offset = 102
}

{
  count = 1002
}

The initial states 
before processing 
events before 
transaction 1 and 2 are 
processed.

The state changes after 
transaction 1 is received 
and counted.

The state changes again 

after transaction 2 is 

received and counted.

Transaction 1 is emitted from the 

transaction source instance to  

the usage analyzer instance.

Transaction source
instance

System usage
analyzer instance

How can we make sure all 
the instances persist states at 

the right times?
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State data vs. temporary data
So far, the definition of state is straightforward: the internal data inside an instance that 
changes when events are processed. Well, the definition is true, but some state data could 
be temporary and doesn’t need to be recovered when an instance is restored. Typically, 
temporary data is not included in the state of an instance.

For example, caching is a popular technique to improve performance and/or effi-
ciency. Caching is the process of a component sitting in front of an expensive or slow 
calculation (e.g., a complex function or a request to a remote system) and storing the 
results, so the calculation doesn’t need to be executed repetitively. Normally, caches are 
not considered to be instance state data, although they could change when events are 
processed. After all, an instance should still work correctly with a brand new cache after 
being restarted. The database connection in each usage writer instance is also temporary 
data, since the connection will be set up again from scratch after the instance is restarted.

Another example is the transaction source component in the fraud detection job. 
Internally, each instance has an offset of the last transaction event it has loaded from the 
data source. However, like we have discussed in chapter 5, because latency is critical for 
this job, it is more desirable to skip to the latest transaction instead of restoring to the 
previous offset when an instance is restarted. The offset is temporary in this job, and it 
should not be considered to be state data. Therefore, the component is a stateless compo-
nent instead of a stateful one.

In conclusion, instance state includes only the key data, so the instance can be rolled 
back to a previous point and continue working from there correctly. Temporary data is 
typically not considered to be state data in stream systems.

The offset is temporary (in 

memory only) and discarded 

when the instance is restarted.

The offset needs to be persisted and restored when the instance is restarted. Therefore, it is in the state of the instance.

Fraud detection job System usage job

Transaction source
instance

{
  offset = 102
}

Transaction source
instance

{
  offset = 102
}
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Stateful vs. stateless components: The code
The transaction source component exists in both the system usage job and the fraud 
detection job, and it works in a similar way. The only difference is that it is stateful in the 
system usage job and stateless in the fraud detection job. Let’s put their code together to 
look at the changes in the stateful component:

•	 The setupInstance() function has an extra state parameter.

•	 There is a new getState() function.

class TransactionSource extends Source {
  EventLog transactions = new EventLog();
  int offset = 0;
  ......
  public void setupInstance(int instance) {
    offset = transactions.seek(LATEST);
  }

  public void getEvents(Event event, EventCollector eventCollector) {
    Transaction transaction = transactions.pull();
    eventCollector.add(new TransactionEvent(transaction));
    offset++;
    system.out.println("Reading from offset %d", offset);
  }
}

The stateless version in the fraud detection job

class TransactionSource extends StatefulSource {
  EventLog transactions = new EventLog();
  int offset = 0;
  ......
  public void setupInstance(int instance, State state) {
    SourceState mstate = (SourceState)state;
    if (mstate != null) {
      offset = mstate.offset;
      transactions.seek(offset);
    }
  }

  public void getEvents(Event event, EventCollector eventCollector) {
    Transaction transaction = transactions.pull();
    eventCollector.add(new TransactionEvent(transaction));
    offset++;
    system.out.println("Reading from offset %d", offset);
  }

public State getState() {
    SourceState state = new SourceState();
    State.offset = offset;
    return new state;
  }
}

The state object of the instance 
contains the current data offset in 
the event log.

The data in the state object is 
used to set up the instance.

The stateful version in the system usage job
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The stateful source and operator in the 
system usage job
In chapter 5, we have read the code of the TransactionSource and the 
SystemUsageAnalyzer classes. Now, let’s put them together and compare. Overall, 
the state handling is very similar between stateful sources and operators.

class SystemUsageAnalyzer extends StatefulOperator {
  int transactionCount;

  public void setupInstance(int instance, State state) {
    AnalyzerState mstate = (AnalyzerState)state;
    transactionCount = state.count;
  }

  public void apply(Event event, EventCollector eventCollector) {
    transactionCount++;

    eventCollector.add(transactionCount);
  }

  public State getState() {
    AnalyzerState state = new AnalyzerState();
    State.count = transactionCount;
    return state;
  }
}

A new state object is created to 

store instance data periodically.

When an instance is constructed, 

a state object is used to initialize 

the instance.

The count variable changes when 

events are processed.

class TransactionSource extends StatefulSource {
  MessageQueue queue;
  int offset = 0;
  ......
  public void setupInstance(int instance, State state) {
    SourceState mstate = (SourceState)state;
    if (mstate != null) {
      offset = mstate.offset;
      log.seek(offset);
    }
  }

  public void getEvents(Event event, EventCollector eventCollector) {
    Transaction transaction = log.pull();
    eventCollector.add(new TransactionEvent(transaction));
    offset++;
  }

public State getState() {
    SourceState state = new SourceState();
    State.offset = offset;
    return new state;
  }
}

The offset value changes when a new 
event is pulled from the event log and 
emitted to the downstream components.

The state object of the instance 
contains the current data offset in 
the event log.

The data in the state object is 
used to set up the instance.
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States and checkpoints
Compared to stateless components we have seen before, two functions are added in 
stateful components and need to be implemented by developers:

•	 The getState() function, which translates the instance data to a state object.

•	 The setupInstance() function, which uses a state object to reconstruct an 
instance.

Now, let’s look at what really happens behind the scenes to connect the dots. This infor-
mation could be useful for you to build efficient and reliable jobs and investigate when 
issues happen.

In chapter 5, we defined checkpoint as “a piece of data that can be used by an instance 
to restore to a previous state.” The streaming engine, more specifically, the instance exec-
utor and the checkpoint manager (remember the single responsibility principle?), is 
responsible for calling the two functions in the following two cases, respectively:

•	 The getState() function is called periodically by the instance executor to get 
the latest state of each instance, and the state object is then sent to the checkpoint 
manager to create a checkpoint.

•	 The setupInstance() function is called by the instance executor after the instance 
is created, and the most recent checkpoint is loaded by the checkpoint manager.

Instance
executorInstance

Instance
executorInstance

Instance
executorInstance

getState() saveState()

1. The instance executor gets 

the state from the instance.

2. The instance executor  
sends the state to the checkpoint manager to be persisted.

1. The instance 
executor loads the 
state from the 
checkpoint manager, 
which searches and 
loads checkpoint data 
in the storage.

loadState() setupInstance()

2. The instance executor uses the 
state object to set up the instance.

Instance
executor

Instance

Instance
executor

Instance

Instance
executor

Instance

Checkpoint
manager

Checkpoint
manager

checkpoint

checkpoint
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For example, in a working streaming job, each event is processed by an instance of the 
source component (the transaction source in the system usage job), and then sent to the 
right instance of the downstream component (the system usage analyzer in the system 
usage job). The process repeats until there is no downstream component left. Therefore, 
each event is processed at a different time in different components, and at the same time, 
different components are working on different events.

To avoid the out-of-sync issue and keep the results correct, instead of dumping states 
at the same clock time, the key is for all the instances to dump their states at the same 
event-based time: right after the same transaction is processed.

Checkpoint creation: Timing is hard
The instance executors are responsible for calling the instances’ getState() function 
to get the current states and then sending them to the checkpoint manager to be saved 
in the checkpoint. An open question is how the instance executors know the right time 
to trigger the process.

An intuitive answer might be triggering by clock time. All instance executors trigger the 
function at exactly the same time. A snapshot of the whole system can be taken just like 
when we put a computer into hibernation mode in which everything in memory is dumped 
to disk, and the data is reloaded back into memory when the computer is woken up.

However, in streaming systems this technique doesn’t work. When a checkpoint cre-
ation is started, some events have been processed by some components but not processed 
by the downstream components yet. If a checkpoint is created this way and used to 
reconstruct instances, the states of different instances would be out of sync, and the 
results will be incorrect afterwards.

transaction
source

system
usage

analyzer

usage
writer

It is a problem that the same 
event is processed by different 

components at different times. How 
can we make sure all the instances 

are in sync?
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Event-based timing
For checkpointing in streaming systems, time is measured by event id instead of clock 
time. For example, in the system usage job, the transaction source would be at the time 
of transaction #1001 when transaction #1001 has just been processed by it and emitted 
out. The system usage analyzer would be at the time of after transaction #1000 at the 
same moment and reaches the time of transaction #1001 after transaction #1001 is 
received, processed, and emitted out. The diagram below shows the clock time and the 
event-based time in the same place. To keep things simple, we are assuming that each 
component has only one instance. The multiple instance case will be covered later when 
we discuss the implementation.

With this event-based timing, all instances can dump their states at the same time to 
create a valid checkpoint.

Clock
time

{
  offset = 100
}

{
  count = 1000
}

{
  offset = 101
}

{
  count = 1001
}{

  offset = 102
}

{
  count = 1002
}Transaction #1001 is 

loaded into the job.

Transaction #1000  
is processed by the 
system usage analyzer 
instance.

Transaction #1000  
is processed by 
transaction source 
instance.

Event-based time: 
transaction #1000

Event-based time: 
transaction #1001

Transaction #1000 is 

loaded into the job.

Transaction source
instance

System usage
analyzer instance
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Creating checkpoints with checkpoint events
So how is event-based timing implemented in streaming frameworks? Like events, the 
timing is built in a streaming context we have been talking about throughout this book. 
Sound interesting?

Event-based timing sounds straightforward overall, but there is a problem: typically, 
there are multiple instances created for each component, and each event is processed by 
one of them. How are the instances synchronized with each other? Here, we would like 
to introduce a new type of events, control events, which have a different routing strategy 
than the data events.

So far, all our streaming jobs have been processing data events, such as vehicle events 
and credit card transactions. Control events don’t contain data to process. Instead, they 
contain data for all modules in a streaming job to communicate with each other. In the 
checkpoint case, we need a checkpoint event with the responsibility of notifying all the 
instances in a streaming job that it is time to create a checkpoint. There could be other 
types of control events, but the checkpoint event is the only one in this book.

Periodically, the checkpoint manager in the job issues a checkpoint event with a 
unique id and emits it to the source component, or more accurately, the instance execu-
tors of the instances of the source component. The instance executors then insert the 
checkpoint event into the stream of regular data events, and the journey of the check-
point event starts.

Note that the instances of the source component that contain user logic don’t know the 
existence of the checkpoint event. All they know is that the getState() function is 
invoked by the instance executor to extract the current states.

Checkpoint event

Data events

2. The checkpoint event 

will be inserted into the 

event stream by the 

instance executors of 

the source component.

1. The checkpoint manager is responsible for 
generating a checkpoint event once in a while.
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A checkpoint event is handled by instance 
executors
Each instance executor repeats the same process:

•	 Invoking the getState() function and sending the state to the checkpoint 
manager

•	 Inserting the checkpoint event into its outgoing stream

If you look at the diagram below closely, you will find that each checkpoint event also 
contains a checkpoint id. The checkpoint id can be considered an event-based time. 
When an instance executor sends the state object to the checkpoint manager, the id is 
included, so the checkpoint manager knows that the instance is in this state at this time. 
The id is included in the checkpoint object, as well, for the same purpose.
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The transaction source 
component sends the 
instance states to the 
checkpoint manager and 
inserts (emits) the 
checkpoint event into its 
outgoing stream.

An state object with a checkpoint id
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A checkpoint event flowing through a job
After the checkpoint event is inserted into the event stream by the source instance exec-
utors, it is going to flow through the job and visit the instance executors of all the oper-
ators in the job. The two diagrams below show that the checkpoint event with id 1 is 
processed by the transaction source and the system usage analyzer components one 
after the other.

The last component, usage writer, doesn’t have a state, so it notifies the checkpoint 
manager that the event has been processed without a state object. The checkpoint man-
ager then knows that the checkpoint event has visited all the components in the job, and 
the checkpoint is finally completed and can be persisted to storage.

Overall, the checkpoint event flows through the job similarly to a regular event but not 
in exactly the same way. Let’s look one level deeper.

The system usage 
analyzer component sends the instance states to  
the checkpoint manager 
and inserts (emits) the 
checkpoint event into  
its outgoing stream.

The usage writer component doesn’t 

have an internal state. It will notify 

the checkpoint manager when the 

checkpoint event is processed.
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Creating checkpoints with checkpoint events 
at the instance level
The checkpoint event flows from component 
to component. State objects are sent to the 
checkpoint manager one by one by the 
instance executors when the checkpoint 
event is received. As a result, all the states are 
created between the same two events (200 
and 201) for every single component in the 
example shown here.

One thing we shouldn’t forget is that there 
could be multiple instances for each compo-

nent. We learned in chapter 4 that each event is routed to a specific 
instance based on a grouping strategy. The checkpoint event is routed 
quite differently; let’s take a look. (Note that this page and the next 
might be a little too detailed for some readers. If you have this feeling, 

please feel free to skip them and jump to the checkpoint loading topic.)
The simple answer is that all the instances need to receive the checkpoint event to 

trigger the getState() call correctly. In our Streamwork framework, the event dis-
patcher is responsible for synchroni
zing and dispatching the checkpoint 
event. Let’s start with the dispatch-
ing first (since it is simpler) and 
talk about the synchronizing in 
the next page.

When an event dispatcher 
receives a checkpoint event from 
the upstream component, it will 
emit one copy of the event to each 
instance of the downstream com-
ponent. For comparison, for a data 
event, typically only one instance 
of the downstream component 
will receive it.
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Only one instance 
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I remember there could 
be multiple instances for each 

component? Will it still work 
correctly?
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Checkpoint event synchronization
While the checkpoint event dispatch-
ing is fairly straightforward, the syn-
chronization part is a little trickier. 
Checkpoint event synchronization is 
the process for the event dispatcher to 
receive the incoming checkpoint 
events. Each event dispatcher receives 
events from multiple instances (in 
fact, it could also receive events from 
instances of multiple components), so 
one checkpoint event is expected 
from each upstream instance execu-
tor. These checkpoint events rarely 
arrive at the same time like in the 
example in the diagram shown here. 
So what should it do in this case?

If we look at the diagram above and take the event-based timing into consideration, 
the time that the checkpoint event #1 represents is between data events #200 and #201. A 
checkpoint event is received by all the instance executors, so it is possible that the check-
point event is processed by one instance earlier than the others like in the diagram 
above. In this case, after receiving the first checkpoint event, the event dispatcher will 
block the event stream that the checkpoint event came from, until the checkpoint event 
is received from all the other incoming connections. In other words, the checkpoint 
event is treated like a barrier, or a blocker. In the example above, the checkpoint event 
arrives from the bottom connection first. The event dispatcher will block the process of 
data event #201 and keep processing events (the data events #200 and the one before it) 
from the upper incoming connection until the checkpoint event is received.

After the checkpoint event #1 is 
received from both connections, 
since there are no other incoming 
connections to wait for, the event 
dispatcher emits the checkpoint 
event to all the downstream 
instance executors and starts con-
suming data events. As a result, 
data event #200 is dispatched 
before checkpoint event #1 and 
data event #201 by the event 
dispatcher.
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Checkpoint loading and backward 
compatibility
Now that we have discussed how checkpoints are created, let’s take a look at how check-
points are loaded and used. Unlike the creation process, which happens repetitively, 
checkpoint loading happens only once in each life cycle of a stream job: at the start time.

When a streaming job is started (e.g., something has happened, like an instance has 
just crashed, and the job needs to be restarted on the same machines; the job instances 
moved to different machines like the migration AJ and Sid are working on), each instance 
executor requests the state data for the corresponding instance from the checkpoint 
manager. The checkpoint manager in turn accesses the checkpoint storage, looks for the 
latest checkpoint, and returns the data to the instance executors. Each instance executor 
then uses the received state data to set up the instance. After all the instances are con-
structed successfully, the stream job starts processing events.

loadState() setupInstance()

Instance
executor

Instance

Instance
executor

Instance

Instance
executor

Instance

Checkpoint
manager

checkpoint

The whole process is fairly straightforward, but there is a catch: backward compatibility. 
The checkpoint was created in the previous run of the job, and the state data in the 
checkpoint is used to construct the new instances. If the job is simply restarted (manu-
ally or automatically), there shouldn’t be any problem, as the logic of the instances is the 
same as before. However, if the logic of the existing stateful components has changed, it 
is important for developers to make sure that the new implementation works with the 
old checkpoints, so the instances’ states can be restored correctly. If this requirement is 
not met, the job might start from a bad state, or it might stop working.

Some streaming frameworks manage the checkpoints between deployments as a spe-
cial type of checkpoints: savepoints. These savepoints are similar to regular checkpoints, 
but they are triggered manually, and developers have more control. This can be a factor 
to consider when developers choose streaming frameworks for their systems.
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Checkpoint storage
The last topic related to checkpoints is storage. Checkpoints are typically created period-
ically with a monotonically increasing checkpoint id, and this engine-managed process 
continues until the streaming job is stopped.

When instances are restarted, only the most recent 
checkpoint is used to initialize them. In theory, we 
can keep only one checkpoint for a stream job and 
update it in place when a new one is created.

However, life is full of ups and downs. For exam-
ple, the checkpoint creation can fail if some 
instances are lost and the checkpoint is not com-
pleted, or the checkpoint data can be corrupted 
because of disk failures and can’t be loaded. In 
order to make the streaming systems more reliable, 
typically the most recent N checkpoints are kept in the storage and the older checkpoints 
can be dropped and the N is typically configurable. In case the most recent checkpoint 
is not usable, the checkpoint manager will fall back to the second latest checkpoint and 
try to use it to restore the streaming job. The fall back can happen again if needed until 
a good one is loaded successfully.

Checkpoint creations are 

triggered periodically and 

the process continues 

forever.

Checkpoint
manager

Time

1 2 3 4 5 6 7

loadState()

Instance
executor

Instance
executor

Instance
executor

Checkpoint
manager

1. The most recent checkpoint can 

be used to restore a streaming  

job when instances are restarted.

3. In case the most recent 

checkpoint has an issue, the 

checkpoint manager will fall back 

to the second recent checkpoint.

2. The most recent N (N = 5) checkpoints are maintained and the older ones can 
be dropped.

Checkpoint
manager

Time

1 2 3 4 5 6 7

N = 5
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Stateful vs. stateless components
We have read enough about the details of stateful components and checkpoints. It is 
time to take a break, look at the bigger picture, and think about the pros and cons of 
stateful components. After all, stateful components are not free. The real question is: 
should I use stateful components or not?

The fact is that only you, the developer, have the final answer. Different systems have 
different requirements. Even though some systems have similar functionality, they may 
run totally differently because the incoming event traffic has different patterns, such as 
the throughput, data size, cardinality, and so on. We hope that the brief comparison 
below can be helpful for you to make better decisions and build better systems. In the 
rest of this chapter, we are going to talk about two practical techniques to support some 
useful features of stateful components with stateless components.

Stateful component Stateless component

Accuracy •	 Stateful computation is 
important for the exactly-once 
semantic, which guarantees 
accuracy (effectively).

•	 There is no accuracy guarantee 
because instance states are not 
managed by the framework.

Latency (when 
errors happen)

•	 Instances will roll back to the 
previous state after errors 
happen.

•	 Instances will keep working on 
the new events after errors 
happen.

Resource usage •	 More resources are needed to 
manage instance states.

•	 No resource is needed to 
manage instance states.

Maintenance 
burden

•	 There are more processes  
(e.g., checkpoint manager, 
checkpoint storage) to main- 
tain and backward compat
ibility is critical.

•	 There is no extra maintenance 
burden.

Throughput •	 Throughput could drop if 
checkpoint management is  
not well tuned.

•	 There is no overhead to handle 
high throughput.

Code •	 Instance state management is 
needed. 

•	 There is no extra logic.

Dependency •	 Checkpoint storage is needed. •	 There is no external dependency.

We use stateful components only when they are 
necessary. We do this to keep the job as simple as 
possible to reduce the burden of maintenance.
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Manually managed instance states
From the comparison, it is clear that accuracy is the advantage of stateful components. 
When something happens, and some instances need to be restarted, streaming engines 
help to manage and rollback the instance states. In addition to the burden, the engine- 
managed states also have some limitations. One obvious limitation is that 
the checkpoint shouldn’t be created too fre-
quently because the extra burden would be 
higher, and the system would become less 
efficient. Furthermore, it could be more 
desirable for some components to have 
different intervals, which is not feasible 
with engine-managed states. Therefore, 
sometimes, it is a valid option to consider is 
managing instance states manually. Let’s use the 
system usage job as an example to study how it works.

The diagram below shows the system usage job with a state storage hooked up. Different 
instances store their states in the storage independently. Like we discussed earlier, absolute 
time won’t really work because different instances are working on different events. And 
since we are managing states manually, now we don’t have the checkpoint events to pro-
vide event-based timing. What should we do to synchronize different instances?

The key is to have something in common that can be used by all components and 
instances to sync up with each other. One solution is to use transaction id. For example, 
transaction source instances store offsets, and system usage analyzer instances store trans-
action ids and current counts in the storage every minute. When the job is restarted, 
transaction source instances load the offset from storage, and then they go back a little 
(a number of events or a few minutes back) 
and restart from there. The system usage 
analyzer instances load the most recent 
transaction ids and counts from the storage. 
Afterwards, the analyzer instances can skip 
the incoming events until the transaction 
ids in the states are found and then the reg-
ular counting can be resumed. In this solu-
tion, transaction source and system usage 
analyzers can manage their instance states 
in different ways because the two compo-
nents are not tightly coupled by the check-
point ids anymore. As a result, the overhead 
could be lower, and we also get more flexi-
bility, which could be important for some 
real-world use cases.

State storage contains 

offsets from transaction 

source, transaction ids and 

counts from system usage 

analyzer. The two kind of 

data can be stored with 

different schedules.

transaction
source

system
usage

analyzer

Event log

usage
writer

Are there any other options to 
manage state?
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Lambda architecture
Another popular and interesting technique is called lambda architecture. The name 
sounds fancy, but take it easy; it is not that complicated.

To understand this technique, we will need to recall a concept from chapter 1 about 
the comparison of batch and stream processing systems. While streaming processing 
systems can generate results in real time, batch processing systems are normally more 
failure tolerant because if things go wrong, it is easy to drop all the temporary data and 
reprocess the event batch from the beginning. In consequence, the final results are 
accurate because each event is calculated exactly once toward the final results. Also, 
because batch processing systems can be more efficient to process a huge number of 
events, in some cases more complicated calculations that are hard to do in real time can 
be applied.

The idea of lambda architecture is rather simple: running a streaming job and a 
batch job in parallel on the same event data. In this architecture, the streaming job is 
responsible for generating the real-time results that are mostly accurate but provides no 
guarantee when bad things happen; the batch job, on the other hand, is responsible for 
generating accurate results with higher latency.

With lambda architecture, there will be two systems to build and maintain, and the 
presentation of the two sets of results can be more complicated. However, the accuracy 
requirement of the streaming job can be much less strict, and the streaming job can 
focus on what it is designed for and good at: processing events in real time.

Stream
process

job

Batch
process

job

Present

The batch job is responsible for generating 

accurate results with higher latency.

The streaming job is responsible for generating 

real-time results without accuracy guarantee.
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Summary
In this chapter, we revisited the instance state and took a closer look. Then, we dived into 
more details of how instance states and checkpoints are managed in streaming jobs, 
including:

•	 Checkpoint creation via checkpoint events

•	 Checkpoint loading and the backward compatibility issue

•	 Checkpoint storage

After briefly comparing stateful and stateless components, we also learned two popular 
techniques that can be used to archive some benefits of stateful components without the 
burdens:

•	 Manually managed instance states

•	 Lambda architecture
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Exercises
1.	 If the system usage job is converted into a stateless job, what are the pros and 

cons? Can you improve it by manually managing the instance states? And what 
would happen if a hardware failure occurred and the instances were restarted on 
different machines?

2.	 The fraud detection job is optimized for real-time processing because of the 
latency requirement. What are the tradeoffs, and how can it be improved with 
lambda architecture?
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You did it! You have reached the end of part two of this book, and we have 
discussed quite a few topics in more detail. Let’s review them quickly to 
strengthen your memory.

In this chapter

•	 reviewing the more complex topics in  

streaming systems

•	 understanding where to go from here

11Wrap-up: Advanced concepts
in streaming systems

It’s not whether you get knocked down; it’s whether 

you get up.

—Vince Lombardi
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Is this really the end?
Well, we authors think it’s safe to say this is the end of the book, but you can count on 
having many more years of learning and experimenting in front of you. As we sit and 
write this chapter, we’re reflecting on the long journey of learning. What an adventure it 
has been for us! Hopefully, after reading this book, you feel that you benefited from it—
we certainly have.

What you will get from this chapter
There have been many complex topics covered in the second half of the book. We’d like 
to recap the main points. You may not need to know all of these topics in depth in the 
beginning of your career, but knowing them will help you establish yourself in the upper 
echelon of technologists in the field when it comes to real-time systems. After all, learn-
ing these topics well is not a trivial task.
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Windowed computations
We learned that not all streaming jobs want to handle events one at a time. It can be 
useful to group events together in some cases, whether that is time- or count-related.

window 1

Window size can be defined by a time period or number of elements. It is defined by the developers.

window 2 window 3

time

In chapter 7, we learned how to process events in groups 
divided by windows.

Before, we had been processing each element individually.

time
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The major window types
Creating or defining a window is entirely up to the developer. We showed three different 
base window types, using the fraud detection job as an example. Note that time-based 
windows are used in the diagrams below.

card no: ....1234

card no:

card no:

card no:

card no:

....6789

....1212

....6789

....1212

card no:

card no:

card no:

card no:

....1212

....2345

....7865

....4433

00:12

00:49

01:10

00:55

01:26

01:37

01:42

02:22

02:38

Even though each 
window time interval is 
the same, the number of 
events per window 
varies.

With sliding windows, you 
simply keep a rolling 
context of data to 
reference and decide  
if an event should be 
marked as fraudulent.

card no: ....1234

card no:

card no:

card no:

card no:

....6789

....1212

....6789

....1212

card no:

card no:

card no:

card no:

....1212

....2345

....7865

....4433

00:12

00:49

01:10

00:55

01:26

01:37

01:42

02:22

02:38

card no: ....1212 card no: ....6789

00:55

01:37

01:42

00:49

01:10

15:21

15:33

Session windows are typically key- 
specific. In this example, the key is the 
credit card number. Thus, each card 
has its own unique window.

1st 1 min window: 
00:00-00:59

2nd 1 min window: 
01:00-01:59

3rd 1 min window: 
02:00-02:59

Fixed Windows

Sliding Windows

Session Windows

Session windows are defined by a max 
duration of timeout length. If a gap in 
time exceeds the timeout length, an 
existing window is closed and a new 
one is opened.

1st window

3rd window

5th window

2nd window

4th window
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Joining data in real time
In chapter 8, we covered joining data in real time. In this scenario, we had two different 
types of events being emitted from the same geographic region. We needed to decide how 
to join events that are in two different event types and coming at different intervals.

Looking at the same part 
of the city, we can see the 
different events that can 
occur in each grid of the 
map. Correlating different 
events in the same grid can 
present its own challenges 
in real-time systems.

The vehicle event 
source receives 
data from vehicles 
in 1-minute 
intervals.

The event joiner combines 
the events in the two 
incoming streams into one 
outgoing stream.

The temperature event 
source receives events 
from sensors in 
10-minute intervals.

Event
joiner

Emission
resolver

Windowed
aggregator

Vehicle event
source

Temperature
event source
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SQL vs. stream joins
Most of us are familiar (enough) with the join clause in SQL. In streaming systems, it is sim-
ilar but not quite the same. In one typical solution, one incoming stream works like a stream, 
and the other stream is (or streams are) converted into a temporary in-memory table and 
used as reference data. The table can be considered to be a materialized view of a stream.

There are two things to remember:

1.	 Stream join is another type of fan-in.

2.	 A stream can be materialized into a table continuously or using a window.

1. As temperature events 
come in, they are either 
updating existing rows or 
added as new rows in the 
temperature table in  
real time. In other words, 
this table is an ever- 
changing set of in-memory 
reference data. It is 
constantly updated by the 
temp events stream.

TAKE NOTE! This table is 

temporary (in memory only) 

and mutable.

2. Join the vehicle 
event with 
temperature  
table on zone.

3. Temperature 
data is added into 
the vehicle event.

{
  zone: 3
  temperature: 95.2
}

{
  make: XXX
  model: AA
  year: 2020,
  zone: 3
} zone temperature

1 95.4

2 94.3

3 95.2

4 95.2

5 95.2

{
  make: XXX,
  model: AA,
  year: 2020,
  zone: 3,
  temperature: 95.2
}

Event joiner

Vehicle event
source

Temperature
event source

Event
joiner

Vehicle event
source

Temperature
event source

Emission
resolver
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Inner joins vs. outer joins
Like the join clause in SQL, there are four types of joins in streaming systems as well. 
You need to choose the right one for your own use case.

Temperaturevehicle
events

Temperaturevehicle
events

vehicle
events

Temperature vehicle
events

Temperature

Inner joins only return results that 
have matching values in both 
tables.

Full outer joins return all results 
in both tables.

Left outer joins return all results 
in the vehicle events table and 
only matching rows from the 
temperature table.

Right outer joins return all results 
in the temperature table and 
only matching rows from the 
vehicle events table.
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Unexpected things can happen in streaming 
systems
Building reliable distributed systems is challenging and interesting. In chapter 9, we 
explored common issues that can occur in streaming systems and cause some instances to 
lag behind, as well as a widely supported technique for temporary issues: backpressure.

After a period of time ….

Because the downstream instance lags behind, the intermediate 
queue backs up with events to be processed. Eventually, when  
the queue becomes full, the system might become unstable.

The events in the queues are 

waiting to be processed by 

the downstream instances.

All instances of the 
score aggregator 
process the events 
normally, except the 
last instance is having 
issues and processing 
events at a lower 
speed.

Instance
executor

Instance
executor

Instance
executor

Instance
executor

Instance
executor

The upstream 

instances emit 

events.

Instance
executor

Instance
executor

Instance
executor

Instance
executor

Instance
executor
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Backpressure: Slow down sources 
or upstream components
Backpressure is a force opposite to the data flow direction that slows down the event 
traffic. Two methods we covered for addressing backpressure were stopping the sources 
and stopping the upstream components.

Stopping the upstream components

Stopping the sources

transaction
source

average 
ticket

analyzer

windowed
proximity 
analyzer

windowed
txn count 
analyzer

score 
aggregator

1. We can temporarily stop the 
source from emitting any 
additional transactions into the 
job by sending a special message 
to all the instances of the source 
component.

2. With the source temporarily 
stopped, all components will be 
able to finish processing all 
transactions traversing the job 
and then the source can be 
resumed.

transaction
source

average 
ticket

analyzer

windowed
proximity 
analyzer

windowed
txn count 
analyzer

score 
aggregator

At the component level, we would stop 
all three of the analyzer components 
from taking new events from the 
source and emitting results to the 
score aggregator component 
temporarily. The score aggregator 
will be able to finish processing the 
pending events and the analyzers  
will be resumed.
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Another approach to handle lagging instances: 
Dropping events
In this approach, when an instance is lagging behind, instead of stopping and resuming 
the processing of the source or the upstream components, the system will just throw 
away the new events being routed to the instance.

It is certainly reasonable to be cautious when choosing this option, as the events will be 
lost. However, it may not be as scary as it sounds. The results are not accurate only when 
backpressure is happening, which should be rare in theory. So, they should still be accu-
rate almost all the time. On the other side, dropping events could be desirable in the cases 
in which end-to-end latency is more important than accuracy. Don’t forget that drop-
ping events is much more lightweight than pausing and resuming the event processing.

If the queue is full, new events emitted to this queue will simply  be dropped.

Instance
executor

Instance
executor

Instance
executor

Instance
executor

Instance
executor
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Backpressure can be a symptom when the 
underlying issue is permanent
We have mentioned a few times that backpressure is a self-protection mechanism for 
avoiding more serious issues in extreme scenarios. While we hope that the issue that 
causes some instances to lag behind is temporary and backpressure can handle it auto-
matically, it is possible that the instance won’t recover and the owner’s interventions will 
be required to take care of the root cause. In these cases, permanent backpressure is a 
symptom, and developers need to address the root causes.

The instance stops working, so backpressure won’t be relieved
In this case, no events will be consumed from the queue, and the backpressure state will 
never be relieved at all. This is relatively straightforward to handle: by fixing the instance. 
Restarting the instance could be an immediate remediation step, but it could be import-
ant to figure out the root cause and address it accordingly. Often, the issue leads to bugs 
that need to be fixed.

The instance can’t catch up, and backpressure will be triggered again: 
Thrashing
If you see the thrashing, you will likely need to consider why the instance doesn’t process 
quickly enough. Typically, this kind of issue comes from two causes: the traffic and the 
components. If the traffic has increased or the pattern has changed, it could be necessary 
to tune or scale up the system. If the instance runs slower, you will need to figure out the 
root cause. Note that it is important to take the dependencies into consideration as well. 
After all, it is important for you, the owner of the systems, to understand the data and 
the systems and figure out what is causing the backpressure to be triggered.
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Stateful components with checkpoints
In chapter 10, we learned how we could stop and start a streaming job without losing 
data. Stateful components allow for the recreation of a context, so the components 
resume the processing from the state where it stopped previously. In our specific case,  
AJ and Miranda needed a way to stop and restart the system usage job on new machines 
transparently.

A checkpoint, a piece of data that can be used by an instance to restore to a previous 
state, is the key for persisting and restoring instance states.

•	 The getState() function is called periodically by the instance executor to get 
the latest state of each instance, and the state object is then sent to the checkpoint 
manager to create a checkpoint.

•	 The setupInstance() function is called by the instance executor after the 
instance is created, and the most recent checkpoint is loaded by the checkpoint 
manager.

1. Instance executor gets state 

from the instance.

2. Instance executor sends 
state to the checkpoint 
manager to be persisted.

Instance
executorInstance

Instance
executorInstance

Instance
executorInstance

Checkpoint
manager

checkpoint

getState() saveState()

1. Instance executor 
loads state from the 
checkpoint manager 
which searches and 
loads checkpoint data 
in the storage.

loadState() setupInstance()

2. Instance executor uses the state 
object to set up the instance.

Instance
executor

Instance

Instance
executor

Instance

Instance
executor

Instance

Checkpoint
manager

checkpoint
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Event-based timing
Every instance in a streaming job needs to get 
its state at the same time, so a job can be 
restored to a previous time when needed. 
However, the time here isn’t the clock time. 
Instead, it needs to be event-based time.

The checkpoint manager is responsible for 
generating a checkpoint event periodically 
and emitting it to all the source instances. 
The event then flows through the whole job 
to notify each instance that it is time to send 
the internal state to the checkpoint manager. 
Note that, unlike the regular data events, 
which are routed to one instance of a down-
stream component, the checkpoint event is 
routed to all the instances of a downstream 
component.

At the instance level, each event dispatcher 
connects to multiple upstream instances and 
multiple downstream instances. The incoming checkpoint events of the event dispatcher 
may not arrive at the same time, and they need to be synchronized before sending out to 
the  downstream instances.

The two checkpoint 

events need to be 

synchronized before 

sending out to the 

downstream instances.
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Stateful vs. stateless components
As a creator or maintainer of streaming jobs, you will need to decide when to use a state-
less or a stateful component. This is where you will need to go with your gut instinct or 
collaborate with a team to make this decision. It is not clear-cut when to use a stateful or 
stateless component in every scenario, so in times like these, you really become the art-
ist. The following table compares several aspects of stateful and stateless components.

Stateful component Stateless component

Accuracy •	 Stateful computation is 
important for the exactly-once 
semantic, which guarantees 
accuracy (effectively).

•	 There is no accuracy guarantee 
because instance states are not 
managed by the framework.

Latency (when 
errors happen)

•	 Instances will roll back to the 
previous state after errors 
happen.

•	 Instances will keep working on 
the new events after errors 
happen.

Resource usage •	 More resources are needed to 
manage instance states.

•	 No resource is needed to 
manage instance states.

Maintenance 
burden

•	 There are more processes  
(e.g., checkpoint manager, 
checkpoint storage) to 
maintain, and backward 
compatibility is critical.

•	 There is no extra maintenance 
burden.

Throughput •	 Throughput could drop if 
checkpoint management is  
not well tuned.

•	 There is no overhead to handle 
high throughput.

Code •	 Instance state management  
is needed. 

•	 There is no extra logic.

Dependency •	 Checkpoint storage is needed. •	 There is no external dependency.

Stateful components are fantastic in terms of adding reliability to a streaming job, but 
remember to keep things simple at first. As soon as you introduce state into your stream-
ing jobs, the complexity of planning, debugging, diagnosing, and predicting could make 
them much more cumbersome. Make sure you understand the cost before making each 
decision.
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You did it!
Pat yourself on the back; that was a lot of material to cover. You have made it through 
about 300 pages of how streaming systems work! So, what’s next? Well, you can start 
working hard to increase your knowledge and experience on the subject. Don’t have a 
degree? Don’t worry; you don’t need one. With a little dedication you can definitely 
master streaming systems (and your tech career). We’ve listed a few ideas for you to con-
sider. Again, you don’t necessarily have to work on them in the same order.

Pick an open source project to learn
Try to rebuild the problems you’ve worked through in the book in a real open source 
streaming framework. See if you can recognize the parts that make up our Streamwork 
engine in real streaming frameworks. What are instances, instance executors, and event 
dispatchers called in the frame you picked?

Start a blog, and teach what you learn
The best way to learn something is to teach it. Start to build your own brand, and be 
ready for some critical reviewers to come your way, too. It is interesting to see people 
interpret the same concept from many different angles.

Attend meetups and conferences
There are many details and real-world use cases in stream systems and other event pro-
cessing systems. You can learn a lot from other people’s stories in related meetups and 
conferences. You can also go further by speaking and holding virtual presentations and 
discussions as well!

Contribute to open source projects
If there is one thing we can say will work for you most in this list, it’s this one. In our expe-
rience, nothing has increased our technology and people skills more than this strategy. 
Contributing to open source projects exposes you to advanced technologies and allows 
you to plan, design, and implement features with real-life professionals across the world. 
Most importantly, we would bet that working on open source projects will fulfill you more 
than anything you’ve ever been paid for. There is something about contributing to a cause 
being driven by purpose that will pay more than any paycheck can for years to come.

Don’t quit, ever
Obtaining any extraordinary goal comes with walking through failure over and over. Be 
okay with failure. It is what will make you better.
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