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preface

A mentor of mine once told me, at the beginning of my tech career, “If there’s one
thing you can do to better your career, it’s contributing to open source.” I’d harbored
that thought in the back of my mind throughout the years but never had a reason to do
so. I thought, “What could I build that would be useful for others?” While working at
1904labs I developed the ECO API for (at the time) Twitter Heron. It came from a client’s
need—and from a little bit of selfishness; I really wanted to write and contribute that
code. Eventually, Twitter donated Heron to the Apache Foundation, and I was invited to
be a committer and part of the project management committee for Heron. The project
interested me because it was the first open source project I did a deep dive on.

About a year later, from that initial commit on Heron’s main branch at about 4 p.m.
on a Monday, I received an email with the subject line, “Apache Heron Book or Course
Project” from Eleonor Gardner. After a quick read, I almost discarded the email, thinking
it was a hoax. After all, why would anyone want me to write a book or teach a course
project? Well, how wrong was I? After a discussion with Mike Stephens, Manning’s asso-
ciate publisher, and a few email exchanges with his assistant, Eleonor, I knew I needed
some help. I reached out to my friend and fellow Apache Heron committer, Ning Wang,
praying that he’d be interested in writing a book with me. Luckily, he was—and that was
the start to our long and rewarding journey.

Initially, the conversations about this book were for us to write specifically about
Heron. But Ning had some ideas to make the book better. After all, technologies change
quickly and breaking changes in software can make a book obsolete quickly. We wanted
to write about a topic that would live beyond individual streaming frameworks. We
agreed to write a framework-agnostic book to teach the core concepts in a way that would
allow readers to be able to jump into any streaming framework’s documentation and hit
the ground running.

So, we started writing the book using only words and then Ning and I were “gently”
guided to try another approach. Again. And again. And again. And again. We learned

XV
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that diagrams make the content of a book much easier for readers to absorb. We created our
first diagrams on paper with pen, and they were dismal:

Over the course of writing the book, our primitive-looking, scrawled creations evolved into
the diagrams you now see in the book. Ning and I designed and developed all of these dia-
grams ourselves. We are extremely proud of what we have created, and we hope that you see

value in this book.

—TJosh Fischer, November 2021
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about this book

Grokking Streaming Systems helps you unravel what streaming systems are, how they
work, and whether they’re right for your business. Because they’re written to be tool-
agnostic, you’ll be able to apply what you learn no matter which framework you choose.
You’ll start with the key concepts and then work your way through increasingly complex
examples, including tracking a real-time count of IoT sensor events and detecting fraud-
ulent credit card transactions in real time. You’ll even be able to easily experiment with
your own streaming system by downloading the custom-built and super-simplified
streaming framework designed for this book. By the time you’re done, you’ll be able to
assess the capabilities of streaming frameworks and solve common challenges that arise
when building streaming systems.

Who should read this book?

We have written this book for developers who have at least a couple of years of experience
and who are looking to improve their knowledge and expertise. If you’ve been building web
clients, APIs, batch jobs, etc., and are wondering what’s next, then this book is for you.

How this book is organized: A road map

This book has a simple setup—just 11 chapters split into two parts; after you work your
way through chapters 1 through 5 in order, you should be able to work through the
remaining chapters in any order you choose. Here’s the rundown:

+ Chapter 1 introduces readers to streaming systems from a 1,000-foot view and
compares them against other typical computer systems.

Xix
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+ Chapter 2 delves into the fundamental ways in which streaming systems work.
+ Chapter 3 discusses parallelization, data grouping, and how streaming jobs can scale.
+ Chapter 4 covers stream graphs and how streaming jobs can be represented.

+ Chapter 5 walks you through delivery semantics, such as how a developer can use a
streaming system to reliably deliver events (or not).

+  Chapter 6 reviews the core concepts and offers a preview of later chapters.

+ Chapter 7 discusses windows—how these systems can help you slice up endless
streams of data.

+ Chapter 8 describes streaming joins, or bringing data together in real time.
+ Chapter 9 tells you all about how streaming systems handle failures.

+  Chapter 10 lets you know how streaming systems deal with stateful operations
in real time.

+ Chapter 11 wraps up the later chapters and offers our advice on where to go next
with your interest in streaming systems.

About the code

We’ve provided code for chapters 2, 3, 4, 5, 7, and 8. You can download it from https://
github.com/nwangtw/GrokkingStreamingSystems. In addition, the source code can be down-
loaded free of charge from the Manning website at https://www.manning.com/books/grokking-
streaming-systems. To run the examples, you will need Java 11, Apache Maven 3.8.1, and the
command-line tool Netcat, or NMap.

This book contains many examples of source code, both in numbered listings and in line
with normal text. In both cases, source code is formatted in a fixed-width font to sep-
arate it from ordinary text. Sometimes code is also shown in bold to indicate that it has
changed from previous steps in the chapter, such as when a new feature adds to an existing
line of code. In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the book. In
rare cases, even this was not enough, and listings include line-continuation markers (= ).
Additionally, comments in the source code have often been removed from the listings when
the code is described in the text. Code annotations accompany many of the listings, highlight-
ing important concepts.


https://github.com/nwangtw/GrokkingStreamingSystems
https://github.com/nwangtw/GrokkingStreamingSystems
https://www.manning.com/books/grokking-streaming-systems
https://www.manning.com/books/grokking-streaming-systems

about this book XXi

liveBook discussion forum

Purchase of Grokking Streaming Systems includes free access to liveBook, Manning’s online
reading platform. Using liveBook’s exclusive discussion features, you can attach comments to
the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself,
ask and answer technical questions, and receive help from the author and other users. To access
the forum, go to https://livebook.manning.com/book/grokking-streaming-systems/discussion/.
You can also learn more about Manning’s forums and the rules of conduct at https://livebook.
manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dialogue
between individual readers and between readers and the author can take place. It is not a
commitment to any specific amount of participation on the part of the authors, whose con-
tribution to the forum remains voluntary (and unpaid). We suggest you try asking them
some challenging questions lest their interest stray! The forum and the archives of previous
discussions will be accessible from the publisher’s website as long as the book is in print.


https://livebook.manning.com/book/grokking-streaming-systems/discussion/
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Part 1
Getting started with
streaming

Part 1 of this book drops you head-first into the world of streaming sys-
tems. It can help you answer questions, such as “Why do streaming systems
work this way?” and “Why would I ever use them?” Chapter 1 describes the
high-level differences in what sets streaming systems apart from others.
Chapter 2 is the hello world of streaming, where we walk you through the
fundamentals of how these streaming systems work. Chapter 3 describes
how to scale out these systems, and chapter 4 shows you how data can tra-
verse streaming jobs. Chapter 5 spells out how these systems can help you
reliably deliver data in real time, and chapter 6 recaps the important points
from each chapter. By the end of part 1, you will have the knowledge neces-
sary to jump into any streaming framework of your choice and hit the
ground running.






Welcome to 1
Grokking Streaming Systems

In this chapter

« anintroduction to stream processing

- differentiating between stream processing systems

and other systems

‘ ‘ If it weren’t for the rocks in its bed, the stream ’ ’
would have no song.

—CARL PERKINS

In this chapter, we will try to answer a few basic questions about streaming
systems, starting with “what is stream processing?” and “what are these
stream processing systems, or streaming systems, used for?” The objective
is to cover some basic ideas that will be discussed in later chapters.
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What is stream processing?

Stream processing has been one of the most popular technologies in the recent years in
the big data domain. Streaming systems are the computer systems that process continu-
ous event streams.

A key characteristic of stream processing is that the events are processed as soon as (or
almost as soon as) they are available. This is to minimize the latency between the origi-
nal event’s entrance into the streaming system and the end result from processing the
event. In most cases, the latency varies from a few milliseconds to seconds, which can be
considered real-time or near real-time; hence, stream processing is also called real-time
processing. From the usage point of view, stream processing is typically used for analyz-
ing different types of events. As a result, the terms real-time analytics, streaming analytics,
and event processing might also be used to reference stream processing systems in differ-
ent scenarios. In this book, stream processing is the chosen term, which is well-adopted
by the industry.

Examples of events:

Here are a few examples of events:

+  The mouse clicks on a computer

+ The taps and swipes on a cell phone

+ The trains arriving at and leaving a station

+  The messages and emails sent out by a person

+ The temperatures collected by sensors in a laboratory

+ The interactions on a website (page views, user logins, clicks, and so on) from all users
+ The logs generated by computer servers in a data center

+ The transactions of all accounts in a bank

Note that, typically, there isn’t a predetermined ending time for the events processed in
streaming systems. You can think of them as never-ending; hence, the events are often
considered continuous and unbounded. Events are everywhere—literally. We are living in
the information age. A lot of data is generated, collected, and processed all the time.

Think about it

Stream processing systems are the

computer systems designed to
process continuous event streams.




Streaming system examples

Streaming system examples

Let’s look at two examples:

+ The first example is a temperature-monitoring system in a laboratory. Many
sensors are installed in different locations to collect temperature data
every second. The streaming system is built to process the collected
data and display the real-time information in a dashboard. It can also
trigger alerts when any anomaly is detected. Laboratory administrators
use the system to monitor all the rooms and make sure the
temperature is in the right range.

+ The second example is the monitoring and analyzing systems that process user
interactions, such as page views, user logins, or button clicks on a website. When
you visit a website, it is common that a lot of events are logged. p—
These raw events often have many fields, so it is not efficient to
digest directly. Also, some of the fields are not human-readable
and need to be translated before consuming. Streaming systems
are very helpful for converting the raw events data into more [

useful information, such as number of requests, active users,
views on each page, and suspicious user behaviors, in this context.

In the examples above, a huge number of events can be processed by streaming systems
to dig out useful information hidden in the data in real time. Streaming systems are very
useful because there is a lot of useful information hidden in these events, and real time
is critical in many cases.



Chapter 1 | Welcome to Grokking Streaming Systems

Streaming systems and real time

A streaming system refers to a system that extracts useful information from continuous
streams of events. More specifically, as we mentioned at the beginning of this section, we
would like streaming systems to process the events and generate results as soon as possi-
ble after the events are collected. This is desirable because it allows the results to be
available with minimal delays and the proper reactions to be performed in time. Their
real-time nature makes streaming systems very useful in many scenarios, such as the
laboratory and the website, where low-latency results are desired.
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In the laboratory, the monitoring system can trigger alerts, start backup devices auto-
matically, and notify the administrators, when necessary. If failed equipment is not
repaired or replaced in time and the temperature is not under control, the temperature-
sensitive devices and samples could be affected or damaged. Some ongoing experiments
may be interrupted as well. For a website, in addition to monitoring issues, charts and
dashboards generated by streaming systems could be helpful for developers to under-
stand how users engage with the website so they can improve their products accordingly.
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How a streaming system works

After seeing some examples of events and streaming systems, you should now have some
ideas about what streaming systems are. The next few pages will show you how stream-
ing systems work from a very high level by comparing them with other types of
systems.

Comparison of four typical computer systems

You’ll find that stream processing systems and other computer systems have many things
in common. After all, a streaming system is still a computer system. Below are a few
typical systems we chose to compare:

+ Applications

»  Backend services

+  Batch processing services

+ Stream processing services
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Applications

An application is a computer program that users interact with directly. Programs
installed on your computer and apps installed on your smartphone are applications. For
example, the calculator, text editor, music and video players, messenger, web browser,
and games installed on a computer or smartphone are all applications. They are every-
where! Users interact with computers via all kinds of applications.

Users use applications to perform tasks. You can create a note or a book in a text edi-
tor and save it in a file. If you have a video file, you can use a video player application to
open and play it. You can use a web browser to search for information, watch videos, and
shop on the internet.

Inside an application

Applications will vary a lot. A command-line tool, a text editor, a calculator, a photo
processor, a browser, and a video game look and feel significantly different from each
other. Have you ever thought of them to be the same type of software? Internally, they
are even more different. A simple calculator can be implemented with a few lines of code,
while a web browser or a game has millions of lines in its code base.

Despite all the differences, the basic process in most applications are similar: there is
a starting point (when the application is opened), an ending point (when the application
is closed), and a loop (the main loop) of the following three steps:

1. Get user input
2. Execute logic Stort
3. Show results

l. Get user inpu’c.

\

a. execute |03'|c. —_—

4—54—

3. Show results. 5

<k

end



Backend services

Backend services

A backend service is a computer program that runs behind the scenes. Different from an
application, a backend service doesn’t interact with users directly. Instead, it responds to
requests and performs specific tasks accordingly. A service is normally a long-running
process, and it waits for incoming requests all the time.

Let’s look at a simple web service as an example. When a request is received, the
program parses the requests, performs tasks accordingly, and, finally, responds. After
a request is handled, the program waits for the next request again. The web service is
often not working alone. It works with other services together to serve the requests.
Services can handle requests from each other, and each one is responsible for a specific
task. The figure below shows a web service and a storage service working together to
serve a page request.

1. Browser: show a. Web Service:
me page XYZ. give me objects X,
Y and 2.
4 ‘ "
v ’
v 7
II e
———— b -’
growser |- web ) _----- a
.- Service ) » L
. L

4. Web Service:
Here is the poge. 3. Skorage: Here
’cheg are.
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Inside a backend service

Inside a backend service, there is a main loop, too, but it works differently, because the
requests processed by a service are quite different from the user inputs in an application.
Because an application is normally used by a single user, checking the user input at the
beginning of the main loop is normally sufficient, but in a backend service, many
requests can arrive at the same time, and the requests can arrive at any moment. To han-
dle the requests promptly, multi-threading is an important technique for this use case. A
thread is a subtask executed within a process; multiple threads can exist within the con-
text of one process. Multiple threads share the process’s resources like memory, and they
can be executed concurrently.

l.a
\d NeW request ig
receiveq,

3. &ob wait for
Wait 4, and ~ request

N y
N, create
request handler f--------- »{ handle request
thread

3. Create o new
thread to handle
the request.

A typical service looks like the previous diagram. When a request is received, the request
handler creates a new thread to perform the real logic, and it returns immediately with-
out waiting for the results. The time-consuming calculation (the real logic) is then per-
formed concurrently on its own thread. This way, the main loop runs very quickly, so the
new incoming requests can be accepted as soon as possible.



Batch processing systems

Batch processing systems

Both applications and backend services are designed to serve clients (human users or
remote requests) as soon as possible. Batch processing systems are different. They are not
designed to respond to any input. Instead, they are designed to execute tasks at scheduled
times or when resources permit.

You can see real-life examples of batch processing systems fairly often. For example,
in a post office, mail is collected, sorted, transported, and delivered at scheduled times
because it is more efficient this way. It would be hard to imagine a system in which some-
one accepts your handwritten letter, runs out the door, and tries to deliver the letter to
the recipient immediately. Well, it could work, but it would be super inefficient, and you
would need a really good excuse to justify the effort.

Nowadays, huge amounts of data, such as articles, emails, user interactions, and the
data collected from services and devices, are generated every second. It is critical and
challenging to process the data and find useful information. Batch processing systems
are designed for this use case.

Look!

Batch processing systems

are designed to process huge
amounts of data efficiently.




12

Chapter 1 | Welcome to Grokking Streaming Systems

Inside a batch processing system

In a typical batch processing system, the whole process is broken into multiple steps, or
stages. The stages are connected by storages that store intermediate data.

A botch processing sgs’cem

lncom'mS dota

Procesy
S{rage 3

In our example, the incoming data is processed in batches (an example could be user
interaction data for each hour on a website). When new data is available (the whole batch
is received and ready to be processed), stage 1 is started to load the data and execute its
logic. The results are persisted in the intermediate storage for the following stages to pick
up and process. After all the data in the batch is processed by the stage, the stage is shut
down and the next stage (stage 2 in the diagram above) is started to execute on the inter-
mediate results generated by stage 1. The processing is completed after the batch is pro-
cessed by all the stages.



Stream processing systems

Stream processing systems

The batch processing architecture is a very powerful tool in the big data world. However,
batch processing systems have one major limitation: latency.

Batch processing systems require data to be collected and stored as batches at regular
intervals, such as hourly or daily before starting. Any events collected in a particular
time window need to wait until the end of the window to be processed. This could be
unacceptable in some cases, such as for the monitoring system in a laboratory, where
alerts will be triggered in the following hour with a batch processing system. In these
cases, it could be more desirable for data to be processed immediately after it is received—
in other words, to get the results in real time. Stream processing systems are designed for
these more real-time use cases. In a stream processing system, data events are processed
as soon as possible once they are received.

We have used the post office as our real-world example of a batch processing system.
In this system, mail is collected, transported, and delivered a few times a day at sched-
uled times. A real-world example of a stream processing system could be an assembly
line in a factory. The assembly line has multiple steps, too, and it keeps running to accept
new parts. In each step, an operation is applied to one product after another. At the end
of the assembly line, the final products come out one by one.

(1

ook!

Stream processing systems
are designed to process huge
amounts of data with low
latency.

13
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Inside a stream processing system

A typical stream processing system architecture looks similar to the batch processing sys-
tems. The whole process is broken into multiple steps called components, and data keeps
flowing from component to component until the processing steps have completed.

s’ceps are |on3 running
processes.

lncom'mg
dato

A stream
processins sgs’cem

N

The major difference between stream processing systems and batch processing systems
is that the components are long running processes. They keep running and accepting
new data to process. Each event will be processed immediately by the next component
after it is processed by the previous component. Therefore, the final results will be gen-
erated shortly after an event is received by the streaming system.



The advantages of multi-stage architecture

The advantages of multi-stage architecture

Both batch and stream processing systems have a multi-stage architecture. This architec-
ture has a few advantages that make it suitable for data processing use cases:

*  More flexible—Developers can add or take away stages to their jobs as they see fit.

*  More scalable—Stages are connected, but each of them is independent from each
other. If one stage becomes the bottleneck of the whole process with the existing
instances (instances 1 through 3 in the diagram below), it is easy to bring up
more instances (instances 4 and 5) to increase the throughput.

*  More maintainable—Complicated processes can be composed with simple
operations, which are easier to implement and maintain.

\ \

’ /7
instance i | instance '
\ \

15



16

Chapter 1 | Welcome to Grokking Streaming Systems

The multi-stage architecture in batch
and stream processing systems

Batch processing systems

In batch processing systems, stages run independently of each other, and instances in the
same stage also run independently of each other. This means they are not all running at
the same time. All the instances in the system can be executed one by one or batch by
batch, as long as the execution order is correct. As a result, you can build a batch process-
ing system to process a huge (we really mean it) amount of data with very limited
resources (though it will take more time to process with fewer resources). To compensate
for the overhead of persistence of intermediate data, normally it is more efficient to pro-
cess events in bigger batches. For example, hourly or daily are common batching win-
dows. The events happening at the beginning of a window have to wait for the whole
hour or day to be closed before being processed. This is the cause of the high latency.

One major advantage is that failure handling is easy with batch processing systems. In
case an issue happens, such as a computer crashing or failing to read or write data, the
failing step can simply be rescheduled on another machine and rerun.

Stream processing systems

On the streaming side of things, all the steps are long running processes. Events are
transferred from one to another continuously. As a result, we don’t have the ability to
stop stages when they are not working properly anymore, and failure handling becomes
more complicated. However, events are being processed as soon as possible, so we can get
real-time results.



Compare the systems

Compare the systems

Let’s compare the systems we have introduced in this section to have a better idea how
different types of computer systems work.

Application

Backend service

Batch processing
system

Stream processing
system

Process user inputs

Process requests

Process data

Process data

Interact with users
directly

Interact with
clients and other
services directly.
Interact with users
indirectly.

Apply operations
on data. The results
can be consumed
by users directly or
indirectly.

Apply operations on
data. The results
can be consumed
by users directly or
indirectly.

Applications are
started and stopped
by users.

Instances of a ser-
vice are long run-
ning processes.

Instances in the
system are sched-
uled to start and
stop.

Instances in the sys-
tem are long run-
ning processes.

Single main loop

Single main loop
with threads

Multi-stage process

Multi-stage process

One khins 1o Keep in mind is that these
examples are just typical architectures for
’ﬂ:)picod use cases. Real-world sgstems could be

architected in many different ways to Sulfill their
own requirements.
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A model stream processing system

After looking at a few different systems, let’s focus on stream processing systems. From
the previous section, you have learned that a streaming system consists of multiple long
running component processes.

gxecutors here and there—this
system can’t be hard to build, right?

<<+ ----
3

- - - - - -

The answer to the question depends on the systems you want to build. What do you want
to do? How big is the traffic? How many resources do you have? How will you manage
these resources? How will you recover from a failure? How will you make sure the results
are correct after the recovery? There are many questions to consider when building a
stream processing system. So, the answer seems to be a yes?

Well, yes, streaming systems can be fairly complicated, but they are not that hard to
build either. In the next chapters, we are going to learn how to build streaming systems
and how they work internally. Are you ready?
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Summary

In this chapter, we learned that stream processing is a data processing technology that
processes continuous events to get real-time results. We also studied and compared typ-
ical architectures of four different types of computer systems to understand how stream
processing systems differ from the others:

+ Applications
» Backend services
+ Batch processing systems

+ Stream processing systems

Exercise

1. Can you think of more examples of applications, services, batch processing
systems, and stream processing systems?






Hello, 2
streaming systems!

In this chapter

learning what events are in streaming systems
understanding the different streaming components
« assembling a job from streaming components

running your code

‘ ‘ First, solve the problem. Then, write the code. ’ ’

—JOHN JOHNSON

21
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The chief needs a fancy tollbooth

1'd like to automate o tollbooth
business thodt will make

The onie¥ beaucoup bucks! K needs to be state .
of the art and handle the Sostest sid
trofdic around.
/7 N\ Thanks for the clear
2 (9 o) requirements. What do we mean

b}j “Post?”

Vm thinking rush hour trofdic.

Thanks again for the clouri{g. we first need to
consider the potential problems of deoling with
never—ending lanes of troftic.

I'd also like to show an exact
count of how many vehicles we've
processed 1o the drivers. It's Purel3
an ego thing to show how fantastic
this bridge is

Vehicles drive onto the bridge )

The sensor detects and emits out vehicle
tgpes as events. AY’s 33s’cem picks up the
events and keeps track of the count of
each vehicle ’c5pe thot has crossed the
br'\dge.

S‘\Sn is upda’ced in real time
after results are processed.
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It started as HTTP requests, and it failed

As technology has quickly advanced
over the years, most of the manual
parts of tollbooths have been replaced
with IoT (Internet of Things) devices.
When a vehicle enters the bridge, the
system is notified of the vehicle type
by the IoT sensor. The first version of
the system is to count the total num-
ber of vehicles by type (cars, vans,
trucks, and so on) that have crossed
the bridge. The chief would like the
result to be updated in real time, so
every time a new vehicle passes, the
corresponding count should be
updated immediately.

The $irst solution
Pm thinking otis
using o web service.

1 wonder i¥ we would
encounter any issues with au
web service ’china to solve this
problem?....

AJ, Miranda, and Sid, as usual, started out with the tried and true backend service
design that used HTTP requests to transfer data. But it failed.

reo\"‘esk

~~a.
S~
~

coused the system to fall

- a
f 2 °7 Thelatency in HTTP requests
Y

behind the incoming events.

Traffic increased for the holi-
days. The system took on a

-
-
-

The sgs’cem cant Keep up with
the number of vehicles erossing the
bridge.

‘p
load that it couldn’t handle. R

The latency of the requests = ™/
caused the system to fall ) ‘L =!
behind, leading to inaccurate 4 =T

gecause of this lag, our count is not
up to date or correct.

up-to-date results for the
chief and a headache for AJ
and Miranda.
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AJ and Miranda take time to reflect

| feel this request/response model isn't rigft.
1t not necessary to woit for a.response when
counting the cars. Look at the nodural How of
data.in the sgs’cem.

S otruek
S .
v ‘\ I. Dado. enters
3. The current total sign is updated in real time the system
count is pulled out after results are processed. From the sensor
from the remote

system to be f i
displayed on the ' \

billboard.

a. The remote
sgs’cem counts the
total number of
vehicles.

Since there is no need for the total
count response at the sensor, | wonder
how we could more nahxmllﬂ moke dadta. Flow
through this sgs’cem? Fast and aceurote
reports are vital.



AJ ponders about streaming systems

AJ ponders about streaming systems

1§ we remove the latency with the
request/response model, | bet we can handle
the trattic and keep an aceurate real-time
count of vehicles.

Pve heard of streaming, Whot's
the major ditference and benefit of
using them?

One benefit is that streaming
systems will handle this type of data
flow better than the request/response
model.

I

Without getting too far into the details of networking and packet exchanges, there is a
difference in how streaming systems communicate over systems that use the http back-
end service architecture. The main difference in the backend service design is that a cli-
ent will send a request, wait for the service to do some calculations, then get a response.
In streaming systems, a client will send a request and not wait for the request to be pro-
cessed before sending another. Without the need to wait for data to be processed, sys-
tems can react much more quickly.

Still a little unclear? We will get you more details step by step as we continue in this
chapter.

25
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Comparing backend service and streaming

Backend service: A synchronous model

send request
:‘ " -\: T T A
.- o 35skem
o SBS%em
still processing
wajﬁng... P S|

o 55$’cem
finishes
processing

Streaming: An asynchronous model

send request
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How a streaming system could fit

At a high level, AJ gets rid of the request/response model and decouples the process into
two steps. The diagram below shows how a streaming system would fit in the scenario of
counting vehicles that cross the bridge. We will cover the details in the rest of the chapter.

The sensor is used to emit out
vehicle &5pes ‘o be processed
b5 AYs SBS‘\'em.

AJ has a streaming job to
keep a running count of
eoch vehicle ’cﬂpe The
diagram shows at a h‘\sh
level the steps of how the
Job would process each

event. loT
Sensor Reader

Vehicle +3pes Senerodced b3
the sensor are pulled into the
s&reamingjob b5 the loT
sensor reader.

! The vehicle counter receives
|

. events from the 10T sensor
reader and processes them.

vehicle Counter
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Queues: A foundational concept

Before moving forward, let’s take a particular look at a data structure: a queue. It is heav-
ily used in all streaming systems.

Traditional distributed systems typically communicate via the request/response model—
also known as the synchronous model. With streaming systems this is not the case, as
the request/response model introduces unneeded latency when working with real-time
data (technically speaking, near real-time could be more accurate, but streaming systems
are often considered to be real-time systems). At a high level, distributed streaming sys-
tems keep a long running connection to components across the system to reduce data
transfer time. This long running connection is for continually transferring data, which
allows the streaming systems to react to events as they occur.

All distributed systems have some form of process running under the hood to transfer
data for you. Among all the options, a queue is very useful to simplify the architecture
for streaming use cases:

*  Queues can help decouple modules in a system so that each part can run at its
own pace without worrying about the dependencies and synchronization.

* Queues can help systems process events in order, since they are a FIFO (first in
first out) data structure.

A queue connects and
decouples two systems.

- = = = > | Yan” “cor” Yruck”

Queues are heavi|5 used
inside s’creomning 33sfems *oo0.

However, using queues to order continually transferring data is not all rainbows and
sunshine. There can be many unexpected pitfalls when guaranteeing how data is pro-
cessed. We will cover this topic in chapter 5.



Data transfer via queues

Data transfer via queues

Take a minute or two to understand the diagram below. It shows two components and
the intermediate queue of events between them, as well as the queues to the upstream
and the downstream components. This transferring of data from one component to the
next creates the concept of a stream, or continuously flowing data.

/ Process and thread

In computers, a process is the execution of a program, and a thread is an execution
entity within a process. The major difference between them is that multiple
threads in the same process share the same memory space, while processes have
their own memory spaces. Both of them can be used to execute the data opera-
tion processes in the diagram that follows. Streaming systems might choose
either one (or a combination of both) according to their requirements and con-
siderations. In this book, to avoid confusion, process is the chosen term (unless
explicitly stated otherwise) to represent independent sequence of execution no
matter which one is really in the implementation.

Th is O
gach one is an independent Pattern op data trapg fer

couwl
process that continuously 490 0n ang on.
tokes elements to process.

@) @)

29

dota dato
et |- - - » opera’c’\on L — pl e3fled | - - - » operodc'\on ——= 3 el
Procesg process

Ploce the element on the
Toke the element $rom the outgoing queue For the next

incoming queue and perform process in the job.
o dota. operation on it.
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Our streaming framework (the start of it)

During the initial planning phases for writing this book, several discussions took place
on how to teach streaming concepts without tight coupling to a specific streaming tech-
nology for its examples. After all, it’s known that technology is advancing every day, and
keeping the book up to date with ever-changing technology would have been extremely
challenging. We feel that a lightweight framework, which we creatively named the
Streamwork, will help introduce the basic concepts in streaming systems in a framework-
agnostic way.

The Streamwork framework has an overly simplified engine that runs locally on your
laptop. It can be used to build and run simple streaming jobs, which can hopefully be
helpful for you to learn the concepts. It is limited in terms of functionality that is sup-
ported in widely used streaming frameworks, such as Apache Heron, Apache Storm, or
Apache Flink, which stream data in real time across multiple physical machines, but it
should be easier to understand.

One of the most interesting aspects (in our opinion) of working with computer sys-
tems is that there’s not a single correct way to solve all problems. In terms of functional-
ity, streaming frameworks, including our Streamwork framework, are similar to each
other, as they share the common concepts, but internally, the implementations could be
very different because of considerations and tradeoffs.

Think about it!

It would be a lot of work to build streaming systems from scratch. Frameworks

take care of the heavy lifting, so we can focus on the business logic. However,
sometimes it is important to know how frameworks work internally.
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The Streamwork framework overview

Generally, streaming frameworks have two responsibilities:

+ Provide an application programing interface (API) for users to hook up customer
logic and build the job

+ Provide an engine to execute the streaming job

We will see the API later. It should be understood that the goal of this book is not to teach
you how to use the Streamwork API. The framework is used only as a framework-agnostic
tool. Let’s look at the engine first. The following diagram attempts to describe at a high
level all of the moving pieces in the Streamwork framework. It should be understood
that there is another process that starts each of the executors, and each executor starts
a data source or a component. Each executor is standalone and does not stop or start
other executors.

The operator executors are
responsible for running operotor
components con’c‘\nuouslﬂ.

A source executor is
responsible for a source
componen’c con’dnuz)uslg.

(@) @) &

Source executor
(source)

______ »] Operotor executor | _ _ _ _ _ Operator executor

(operator D (operator &

executors are connected with \/

The ab'\li’cg to add operators
onto operoecors is limitless.

event queues.

The framework is very simple in this chapter. However, all the components mentioned
are comparable to real streaming frameworks components. The Streamwork framework
will evolve in later chapters when more functionality is added.
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Zooming in on the Streamwork engine

We are going to zoom in to show in detail how executors apply user logic on
events.

Let’s zoom in to show how Iogic is
executed in o source executor and
fwo operod:or executors.

(@)

Source executor
(source)

(operador D

The event queue
between the two

Source executor

D..source_'. getEvents ()
y Q a
Source

In o user—-defined

source object, User
loS‘\c is implemented in
this geteventsO
function.

executors

e4 | e3

The data source

object accepts

events into the

Jjob $rom outside

world.

Opera’cor executor

I

Operoecor executor

(operator &

Operator executor
D,operatpr .apply (e2)

v .- ‘
Operodcor |

y

[apply (event)l

In & user—-defined
operator object, User
logic is implemented in
this oupplﬂ() Sunction.
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Core streaming concepts

There are five key concepts in most streaming systems: event, job, source, operator, and
stream. Keep in mind that these concepts apply to most streaming systems with a one-
to-one mapping.

events

Source executor

Operoecor executor

D._source_'. getEvents () D._operatgr .apply (e2)

Source l

[getEvents [} l

> |ed | ez |- »
y 4

Operodtor l
‘apply (evnt) l

¥
]
A
®
1
1
1
1
1
1
y
o, .
3
S
g
S

If we ignore the executors and only look at user-defined objects, we get a new diagram to
the right, which is a cleaner (more abstract) view of the streaming system without any
details. This diagram (we call it a logical plan) is a high-level abstraction that shows the
components and structure in the system and how data can logically flow through them.
From this diagram, we can see how the source object and the operator object are con-
nected via a stream to form a streaming job. It should be known that a stream is nothing
more than a continuous transfer of data from one component to another.

33
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More details of the concepts

The diagram below shows the five key concepts, event, job, source, operator, and stream,
with more details.

A stream refers to the
ongoing delNerg of events.
event, also Known as

Job, also called a Pipeline or o Topolosfj, is an Tuple, element, or Messoge

implementation of a. streaming system. A job is in different scenarios, is o

composed 0% components (sources and operotors) single piece of undividable
and streams connecting the components. data in o streom.

A
[e]
5
®

Source is the part that Operadtor; also called
brings data $rom the Transform, is the part
outside world into a that receives and
s’creamins sbs’cem. In other processes events.
words, sources are the Operators are where the
entry points of streaming logjic will occur.

systems for dota.

We will cover how the concepts are used in a streaming system as we walk through the
different parts of your first streaming job. For now, make sure the five key concepts are
crystal clear.
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The streaming job execution flow

With the concepts we have learned
in the last two pages, you can now
visualize this vehicle count stream-
ing job of two components and one

stream between them to look like |,

stream of
source vehicle
l events

the image on the right.

sensor reader | - - - -

opera’cor

»] Vvehicle counter

+ The sensor reader brings data in from the sensor and stores the events in a queue.
It is the source.

+ The vehicle counter is responsible for counting vehicles that pass through the
stream. It is an operator.

+ The continuous moving of data from the source to the operator is the stream of
vehicle events.

The sensor reader is the start of the job, and the vehicle counter is the end of the job. The
edge that connects the sensor reader (source) and the vehicle counter (operator) rep-
resents the stream of vehicle types (events) flowing from the sensor reader to the vehicle

counter.

In this chapter, we are going to dive into the system above. It will run on your local
computer with two terminals: one accepts user input (the left column), and the other one
shows the outputs of the job (the right column).

Job 'mpudr

Jjob output

car
truck
car

»

_\

SensorReader --> car
VehicleCounter -->

car: 1

car: 1
truck: 1

car: 2
truck: 1

SensorReader --> truck
VehicleCounter -->

SensorReader --> car
VehicleCounter -->

35
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Your first streaming job

Creating a streaming job using the Streamwork API is straightforward with the follow-
ing steps:

1. Create an event class.
2. Build a source.

3. Build an operator.

4

. Connect the components.

Your first streaming job: Create your event class

An event is a single piece of data in a stream to be processed by a job. In the Streamwork
framework, the API class Event is responsible for storing or wrapping user data. Other
streaming systems will have a similar concept.

In your job, each event represents a single vehicle type. To keep things simple for now,
each vehicle type is just a string like car and truck. We will use VehicleEvent as
the name of the event class, which is extended from the Event class in the API. Each
VehicleEvent object holds vehicle information that can be retrieved via the get-
Data() function.

The internal string for
vehicles

public class VehicleEvent extends Event {
private final String vehicle;
public VehicleEvent(String vehicle) {

this.vehicle = vehicle;4%———————____——_“‘\\

The constructor that takes vehicle as

@Override o s’crins and stores it

public String getData() {
return vehicle;

Gets vehicle data stored in the event



Your first streaming job

Your first streaming job: The data source

A source is the component that brings data from the outside world into a streaming
system. The earth icon is a representation of data that would be outside of your job. In
your streaming job the sensor reader accepts vehicle type data from a local port into
the system.

Q

5 K

‘ SensorReader: Source I
‘ getEvents () I

X6

X

-- A

All streaming frameworks have an API that gives you the ability to write the logic that
only you care about for data sources. All data source APIs have some type of lifecycle hook
that will be called to accept data in from the outside world. This is where your code
would be executed by the framework.

4 What is a lifecyle hook?

Lifecycle hooks in software frameworks are methods that are called in some type
of repeatable pattern by the framework in which they reside. Typically, these
methods allow developers to customize how their application behaves during a
life cycle phase of a framework they are building their application in. In the case
of the Streamwork framework we have a lifecycle hook (or method) called
getEvents(). It is called continuously by the framework to allow you to pull
data in from the outside world. Lifecyle hooks allow developers to write the logic
they care about and to let the framework take care of all the heavy lifting.
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Your first streaming job: The data source (continued)

In your job the sensor reader will be reading events from the sensor. In this exercise you
will simulate the bridge sensor by creating the
events yourself and sending them to the open
port on your machine that the streaming job is
listening to. The vehicle types you send to the  g= @~ fg—p—— -------.
port will be picked up by the sensor reader and * m

emitted into the streaming job to show what it’s (o (o) o0 _
like to process an infinite (or unbounded)

stream of events. —> ()

»
>

the sensor ’ \

a. events are
Sensorkeader: Source emitted to the
, ou’cgoing stream
(the queue).

l. getEvents ()
is the user-defined - ~
logic o read data
from the 10T sensor.

N

getEvents () -

The Ii%cgcle hook of the
s’cream'mg sBS%em ‘o
execute user defined logic

The Java code for the SensorReader class looks like:

public class SensorReader extends Source {
private final BufferedReader reader;
public SensorReader(String name, int port) {

super (name); Reod one vehicle

reader = setupSocketReader(port); type From input.
}
@Override
public void getEvents(List<Event> eventCollector) {
String vehicle = reader.readLine();
eventCollector.add(new VehicleEvent(vehicle));
System.out.println("SensorReader --> " + vehicle);

emit the s’crins into
the collector.
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Your first streaming job: The operator

Operators are where the user processing logic will occur. They are responsible for accept-
ing events from upstream to process and generating output events; hence, they have both
input and output. All of the data processing logic in your streaming systems will typi-
cally go into the operator components.

Q

‘VehicleC;oun’cer: Operotor I
iapply (event) I

The

re
o . PrOQ .
3% int opercits Sing logie
ors,

To keep your job simple, we have only one source and one operator in it. The current
implementation of the vehicle counter is to just count the vehicles and then to log the
current count in the system. Another, and potentially better, way to implement the sys-
tem is for the vehicle counter to emit vehicles to a new stream. Then, logging the results
can be done in an additional component that would follow after the vehicle counter. It is
typical to have a component that has only one responsibility in a job.

By the way, Sid is the CTO. He is kind of old-fashioned sometimes, but he is very
smart and interested in all kinds of new technologies.
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Your first streaming job: The operator (continued)

Inside the VehicleCounter component,a <vehicle, count> map is used to store
vehicle type counts in memory. It is updated accordingly when a new event is received.
In this streaming job, the vehicle counter is

the operator that counts vehicle events. This | %ey(vehicle) value(Count)
operator is the end of the job, and it doesn’t
create any output to the downstream [coar a
operators.
truck I
van [
I. AcCept incoming

events. RN ]vehicle(bounker: Operadtor I
b Y
‘ apply (event) I
\ 3. apply () the user-defined

logic to per‘?orm on data events.

public class VehicleCounter extends Operator {
private final Map<String, Integer> countMap =
new HashMap<String, Integer>();

. . . Retrieve the count
public VehicleCounter(String name) {
$rom the map.
super(name);
}
@Override
public void apply(Event event,List<Event> collector) {
String vehicle = ((VehicleEvent)event).getDatal();
Integer count = countMap.getOrDefault(vehicle, 0);
count += 1; <= Increase the count.
countMap.put(vehicle, count); < Save the count back to
System.out.println("VehicleCounter --> "); ’chemap.

printCountMap(); +—————— Printthe current
} count.



Your first streaming job Zy

Your first streaming job: Assembling the job

To assemble the streaming job, we need to add both the SensorReader source and the
VehicleCounter operator and connect them. There are a few hooks in the Job and
Stream classes we built for you:

+ Job.addSource() allows you to add a data source to the job.

+ Stream.applyOperator() allows you to add an operator to the stream.

iob a. Add the source 3. Apply the operodtor
J object and get a to the stream.
- stream.
I
\
\
\
\
Y
I. Create the Jo\; T SensorReader |- - - - - +| VehicleCounter
object.

The following code matches the steps outlined in the previous image:

public static void main(String[] args) {
Job job = new Job(); <= Create the job object.
Stream bridgeOut=job.addSource(new SensorReader());

Add. the source object and get o stream.

bridgeOut.applyOperator(newVehicleCounter()); <— Appl5 the operator
to the stream.
JobStarter starter = new JobStarter(job);
starter.start(); ¢——m— Start the job.
}



42

Chapter 2 | Hello, streaming systems!

Executing the job

All you need to execute the job is a Mac, Linux, or Windows machine with access to a
terminal (command prompt on Windows). You will also need a few tools to compile and
run the code: git, Java development kit (JDK) 11, Apache Maven, Netcat (or Nmap on
Windows). After all the tools are installed successfully, you can pull the code down and
compile it:

$ git clone https://github.com/nwangtw/GrokkingStreamingSystems.git
$ cd GrokkingStreamingSystems
$ mvn package

The mvn command above should generate the following file: target/gss.jar. Finally, to
run the streaming job, you’ll need two terminals: one for running your job and the other
for sending data for your job to ingest.

. Open socket ot port 9990
in the input terminal. Thisis 3. gtart the streaming job.
where you send data. into will connect 4o the socket ot
the streaming job. port 9990 to mimic the
sensor reader data source.
Input terminal Job terminal
‘ . .
$ nc -1k 9990 $ java -cp target/gss.jar \

com.streamwork.ch02.job.VehicleCountJob

Open a new terminal (the input terminal), and run the following command. (Note that
nc is the command on Mac and Linux; on Windows, it is ncat). This will start a small
server at port 9990 that can be connected to from other applications. All user inputs in
this terminal will be forwarded to the port.

$ nc -1k 9990

Then, in the original terminal (the job terminal) that you used to compile the job, run
the job with the following command:

$ java -cp target/gss.jar com.streamwork.ch02.job.VehicleCountJob
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Inspecting the job execution

After the job is started, type car into the input terminal, and hit the return key, then the
count will be printed in the job terminal.

SensorReader source emits
“car” into the sgskem.

\npudt terminal Job terminal )

car SensorReader --> car

VehicleCounter --—>
car: 1 i S—
N\

vehicleCounter operotor processes “car”
oand adds it to the total car count.

Now if you continue typing in truck in the input terminal, the counts of car and
truck will be printed in the job terminal.

truck SensorReader --> truck

VehicleCounter -—>
car: 1
truck: 1

The count map in the
VvehicleCounter operoecor
has a.new en’cr5 Lor truck.

You can keep typing in different type of vehicles (to make it more interesting, you can
prepare a bunch of vehicles in a text editor first and copy/paste them into the input ter-
minal), and the job will keep printing the running counts, as in the example below, until
you shut down the job. This demonstrates that as soon as data enters the system your
streaming job takes action on it without delay.

car 41 SensorReader -—> car
car VehicleCounter -—>
car: 2

truck: 1
SensorReader --> car

VehicleCounter —--—>
car: 3
truck: 1
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Look inside the engine

You have learned how the components and the job are created. You also observed how
the job runs on your computer. During the job execution, you've hopefully noticed the

events automatically move from the sensor reader object to the vehicle counter object
without you needing to implement any additional logic. Fancy, right?

Job

T —

\
\
N\

~
add source ~ ~ _

- - 9] SensorReader

»] VehicleCounter
appl3 operod:or

Your job or components don’t run by themselves. They are driven by a streaming engine.

Let’s take a look under the hood and inspect how your job is executed by the Streamwork
engine. There are three moving parts (at the current state), and we are going to look into
them one by one: source executor, operator executor, and job starter.

D Source executor Doperadtor executor

source.getEvents ()

operator . apply ()

1

1

1

1

\ ~
1

1

1

1

1

\

|
1
1
1
1 N
1
~ 1
1
1
1
1
3

SensorkReader: Source

]vehicleCoun’cer: Operator I
getEvents () ‘ apply (event) I

Nt

Sl
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Look inside the engine: Source executors

In the Streamwork we’ve built for you, the source executor continuously runs data
sources by executing over infinite loops that pull data in from the outside world to be
placed on an outgoing queue within the streaming job. Even though there is a yes deci-
sion on Exit, yes will never be reached.

Source objects are one of the Source executor runs the user-

components in streaming jobs provided source object. Process starts
that are implemented b5 users
of the streaming Lromework to
pull data. in $rom the outside
world.

1
1
1
1
P == === == = == === 1 1
1
1
1
1

this direction.

- 1:
1 'I Invoke : !

' Source : :Source.gek&\ler\fso :4: 1

’ (sensorkeader) i, 1| toacCeptnew 1 |

Nt o events Lo

SR SO B}

. v Vi

Data flows in N Y ____ 4 i

1 P

1 ' : |

1 1 1

Push events to |

owtgoing queue. H—b

Source executors invoke hooks
to execute methods on source
objects and push all received
events into the outgoing event
queue.

%

Outgoing queue

After a source
: execution, the
1 process loops

: back over.
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Look inside the engine: Operator executors

In the Streamwork, the operator executor works in a similar way to the source executor.
The only difference is that it has an incoming event queue to manage. Even though there
is a yes decision on Exit, yes will never be reached.

OPera’cor executor runs the

Process starts
user—provided operator object. roee o

here.

Incoming queue

1
1
1
1
L e e e 1 : user—provided
. T T T | operator object
! ! Pull events from 1 1
: > | incoming queue. et |
1 :_ _____ e ——— _: I 1
1 1 1
: IR AN ¥
. ; Invoke N o .
! ' Opera’cor.applljo .'<.|_>' ) perator
1 1 1 L H
| 1+o process events.| E (vehicleCounter)
1 L ————- -~ 1
1 : 1
1
1
1

Push events to
outgoing queue.

1
In each Ioop, 1 : }
executor takes one ftommmms Tt T . !
event $rom the v | 1 Oukgoing queue
incoming event :
H |

itas paromneter ‘o
invoke the apply ()
function of the user-
provi ded opera’cor.

after an
operator
execution, the
process loops

1
1
1
1
1
1
1
1
1
1
1
1
queue and then uses ! no
1
1
1
1
1
1
1
1
1
1
1
1 bockK over.
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Look inside the engine: Job starter

The JobStarter is responsible for setting up all the moving parts (executors) in a job
and the connections between them. Finally, it starts the executors to process data. After
the executors are started, events start to flow through the components.

I. Create source and

operator executors. a. Creote the intermediate
event queue to connect
the source and operator

executors.
D Source executor Doperod:or executor
e
source.getEvents () operator.apply (E2)

3. Start the executors.

Remember!

Keep in mind that this is the architecture of a typical streaming engine, and an

attempt to generalize how frameworks work at a high level. Different streaming
frameworks may work in different ways.
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Keep events moving

Let’s zoom out to look at the whole engine and its moving parts, including the user-
defined components of the actual job.

The source executor Keeps

Job starter sets up the
'\n\loK'lnS the getEvents ()

The operotor executor keeps
executors and the pulling vehicle types one by
function in the SensorReader intermediate event queue. one Srom the incoming event
closs to acCept user input and Then it starts the executor

queue and invoking the
pushing the vehicle types to the processes. apply () function of the
event queue.

VehicleCounter object
with the dato.

l 'L Source executor I ‘Dopera’cor executor I )

‘source .getEvents () I ‘pperator .apply (E2) I

\
\
1
1
1 ~
1
1
1
1
1
\

1
1
1
1
1 ~
1
. 1
1
1
1
|

SensorReader: Source

]Vehiclecoum’cer: Operator I
‘\ getEvents () ‘ apply (event) I
I

1

1

\ r .

N User provided
source object

User provided
operator object

After our job is started, all the executors start running concurrently or, in other words,
at the same time!
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The life of a data element

Let’s discuss a different aspect of streaming systems and take a look at the life of a single
event. When you input car and press the enter key in the input terminal, the event will
travel through the streaming system, as explained in the following diagram.

3. Source executor pu’cs

3. Operodcor executor pul\s
the data event on the

o. dota event $rom the
intermediote event queue
and sends it to the operodor.

intermediate event queue.

| DSowrce executor I lDoperoecor executor I

Isource .getEvents () I ipperator .apply (E2) I

1

1

1

1

1 ~
1

1

1

1

1

1

\

L
1

1

1

1

1

1

1

~ 1
1

1

1

|

‘ SensorReader: Source I VvehicleCounter: Operator
‘ getEvents () I

r.

Nl

A

apply (event)

4, r-\ppI3 user-defined logjic
on the events.

I. The user-defined logic
retrieves events $rom the
outside data source.
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Reviewing streaming concepts

Congratulations on finishing your first streaming job! Now, let’s take a few minutes to
step back and review the key concepts of streaming systems.

A stream refers o the onsoing delNer5
of events. &vent, also known as Tuple,
glement, or Message in different
scenarios, is a single piece of undividable
dota in o stream.

Job, also known as a Pipeline or a
Topologg, is an implementation of a
streaming system. A job is composed of
components (sources and opera’cors) and
streams connecting the components.

1 1

1 1

1 1

1 sSource [6)

! perodror :

1 1

1 1
Source is the part that br'mss doto. from
the outside world into a streaming Operator, also called Transform, is the
system. In other words, sources are the part that receives and processes events.
entry points for data in streaming Operators are where the logic will occur.

sgs’cems.



Exercises

Summary

A streaming job is a system that processes events in real time. Whenever an event happens,
the job accepts it into the system and processes it. In this chapter, we have built a simple job
that counts vehicles entering a bridge. The following concepts have been covered:

+ Streams and events
+  Components (sources and operators)
+ Streaming jobs

In addition, we looked into our simple streaming engine to see how your job is really
executed. Although this engine is overly simplified, and it runs on your computer instead
of a distributed environment, it demonstrates the moving parts inside a typical stream-
ing engine.

Exercises

1. What are the differences between a source and an operator?

2. Find three examples in real life that can be simulated as streaming systems. (If you
let us know, they might be used in the next edition of this book!)

3. Download the source code and modify the SensorReader source to generate
events automatically.

4. Modify your VehicleCounter logic to calculate the collected fees in real time.
You can decide how much to charge for each vehicle type.

5. The VvehicleCounter operator in the first job has two responsibilities:
counting vehicles and printing the results, which is not ideal. Can you change the
implementation and move the printing logic to a new operator?

51






Parallelization
and data grouping

3

In this chapter

parallelization
data parallelism and task parallelism

+ event grouping

‘ ‘ Nine people can’t make a baby in a month. ’ ’

—FREDERICK P. BROOKS

In the previous chapter, AJ and Miranda tackled keeping a real-time count
of traffic driving over the bridge using a streaming job. The system she built
is fairly limited in processing heavy amounts of traffic. Can you imagine
going through a bridge and tollbooth with only one lane during rush hour?
Yikes! In this chapter, we are going to learn a basic technique to solve a fun-
damental challenge in most distributed systems. This challenge is scaling
streaming systems to increase throughput of a job or, in other words, pro-
cess more data.

53
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The sensor is emitting more events

In the previous chapter, AJ tackled keeping a real-time count of traffic driving over the
chief’s bridge using a streaming job. Detecting traffic with one sensor emitting traffic
events was acceptable for collecting the traffic data. Naturally, the chief wants to make
more money, so he opted to build more lanes on the bridge. In essence, he is asking for
the streaming job to scale in the number of traffic events it can process at one time.

The oridoe

The single lane 35$’cem )

o D R
The sensor detects and emits out

A typical solut.ion in. computer &ll = vehicle types as events. AVs system
systems to achieve higher picks up the events and keeps track

. /! \
throughput is to spread out / van of the count of each vehicle type that
the calculations onto multiple ' has crossed the bridge.
processes, which is called
parallelization.

The multi-lane sgs’cem

P -
Coma

(O¥) — / 4
&C\j/ gach sensor is ass'\sned ‘o

04 ] read events $rom one lane.
The events are both emitted

C\D from one point in the sgs’cem.

Similarly, in streaming systems, the calcula-
tion can be spread out to multiple instances.
You can imagine with our vehicle count
example that having multiple lanes on the
bridge and having more tollbooths could be
very helpful for accepting and processing \
more traffic and reducing waiting time.
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Even in streaming, real time is hard

Increasing lanes caused the job to fall behind

The increased load on the streaming
_job from sensor events is t0o much for a.
single sensor reader or vehicle counter to
process.

Couldn’t we add more instances
of the sensor reader and the vehicle
counter?

gut... How do we decide which
data goes where with mul’ciple
instances?

I

Sensor vehicle

Reader Counter

Wwe will scale our
previous job $rom this ...

... t0 this.

2ensSor  \o - o e e — = > vehicle
Reader > , Counter

Sensor \,”
Reoader

vehicle
Counter
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Why it’s important

Pretend each of these
queues are 100
elements lons.

New concepts: Parallelism is important

Parallelization is a common technique in computer systems. The idea is that a time-
consuming problem can often be broken into smaller sub-tasks that can be executed
concurrently. Then, we can have more computers working on the problem cooperatively
to reduce the total execution time greatly.

Let’s use the streaming job in the previous chapter as an example. If there are 100 vehicle
events waiting in a queue to be processed, the single vehicle counter would have to process
all of them one by one. In the real world, there could be millions of events every second
for a streaming system to process. Processing these events one by one is not acceptable in
many cases, and parallelization is critical for solving large-scale problems.

On|3 one operator to
pull events of% and

PY‘OCQSS

more than one opera’cor ‘o pul\
events off and process. In this
speciSFic scenario we have a

parallelization of two. We are doing

twice the amount of work in the
same time window.
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New concepts: Data parallelism

It is not fast enough to solve the counting problem with one computer. Luckily, the chief has
multiple computers on hand—because what tollbooth IT operation center doesn’t? It is a
reasonable idea to assign each vehicle event to a different computer, so all the computers can
work on the calculation in parallel. This way you would process all vehicles in one step instead
of processing them one by one in 100 steps. In other words, the throughput is 100 times
greater. When there is more data to process, more computers instead of one bigger computer
can be used to solve the problem faster. This is called horizontal scaling.

Pretend we have

57

100 operod:ors here.

Pretend this queue is
100 elements long.

/A quick note

It should be noted that modern day CPUs
have internal instruction pipelines to
improve processing performance dramati-
cally. For this case (and the rest of the book),
we will keep the calculations simple and
ignore this type of optimization whenever
we refer to parallelization.

-

gach operotor is
execu’dng the same
opera’cor on o
difSerent subset of
the whole dato.
collection.
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New concepts: Data execution independence

Say the phrase data execution independence out loud, and think about what it could
mean. This is quite a fancy term, but it isn’t as complex as you think.

Data execution independence, in regards to streaming, means the end result is the
same no matter the order of the calculations or executions being performed across data
elements. For example, in the case of multiplying each element in the queue by 4, they
will have the same result whether they are done at the same time or one after another.
This independence would allow for the use of data parallelism.

\

mudﬁpllj b3 4

\

mul’dpllj bg 4
r—» mud’ciplg b3 4

gach operation per¥ormed odwaﬂs
results in the outcome of 4 either
consecwci\/elg or sgnchronouslg.
Becouse | ¥ 4 = 4, Thereisno
need to use dato. $rom any other
element in the queue. Theretore,
we have dato. execution
independence.

[ mulkiplﬂ b5 4
Toke aoll elements at
the same time to
mud’ciplB bﬂ 4,

L 5 mu]’cipl5 b3 4

> mu]’cipl5 b3 4
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New concepts: Task parallelism

Data parallelism is critical for many big data systems as well as general distributed sys-
tems because it allows developers to solve problems more efficiently with more comput-
ers. In addition to data parallelism, there is another type of parallelization: task
parallelism, also known as function parallelism. In contrast to data parallelism, which
involves running the same task on different data, task parallelism focuses on running
different tasks on the same data.

A good way to think of task parallelism is to look at the streaming job you studied in
chapter 2. The sensor reader and vehicle counter components keep running to process
incoming events. When the vehicle counter component is processing (counting) an
event, the sensor reader component is taking a different, new event at the same time. In
other words, the two different tasks work concurrently. This means an event is emitted
from the sensor reader, then it is processed by the vehicle counter component.

eoth are exewﬁng at the same time

per%rming their speci¥ic tasks.
In streaming sgs’cems, tosk
parallelism is about breadﬁins the
whole process into smaller steps.
¢ 9
L4
<
An event is processed b5 the two aYavs

components one b3 one.
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Data parallelism vs. task parallelism

Let’s recap:

+ Data parallelism represents that the same task is executed on different event sets
at the same time.

+ Task parallelism represents that different tasks are executed at the same time.

Data parallelism is widely used in distributed systems to achieve horizontal scaling. In
these systems, it would be relatively easy to increase parallelization by adding more com-
puters. Conversely, with task parallelism, it normally requires manual intervention to
break the existing processes into multiple steps to increase parallelization.

Streaming systems are combinations of data parallelism and task parallelism. In a
streaming system, data parallelism refers to creating multiple instances of each compo-
nent, and task parallelism refers to breaking the whole process into different compo-
nents to solve the problem. In the previous chapter, we have applied the task parallelism
technique and broken the whole system into two components. In this chapter, we are
going to learn how to apply the data parallelism technique and create multiple instances
of each component.

o Sensor
Reader
S’creaming sgs’cems ore
combinations of data. parallelism and
Sensor task parallelism.
oo Reoader

In most cases, if you see the term parallelization
or parallelism without the data or task in stream- v
ing systems, it typically refers to data parallelism.

This is the convention we are going to apply in

this book. Remember that both parallelisms are

critical techniques in data processing systems.

ANA
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Parallelism and concurrency

Is there a difference?

This paragraph could easily start a contentious tech uproar, potentially as easily as writ-
ing a paragraph to justify the use of tabs over spaces. During the planning sessions of this
book, these concepts came up several times. Typically, these conversations would always
end up with us asking ourselves which term to use.

Parallelization is the term we’ve decided to use when explaining how to modify your
streaming jobs for performance and scale. More explicitly in the context of this book,
parallelism refers to the number of instances of a specific component. Or you could say
parallelism is the number of instances running to complete the same task. Concurrency,
on the other hand, is a general word that refers to two or more things happening at the
same time.

It should be noted that we are using threads in our streaming framework to execute
different tasks, but in real-world streaming jobs you would typically be running multiple
physical machines somewhere to support your job. In this case you could call it parallel
computing. Some readers may question whether parallelization is the accurate word
when we are only referring to code that is running on a single machine. This is yet
another question we asked ourselves. Is this correct for us to write about? We have
decided not to cover this question. After all, the goal of this book is that, by the end, you
can comfortably talk about topics in streaming. Overall, just know that parallelization is
a huge component of streaming systems, and it is important for you to get comfortable
talking about the concepts and understanding the differences well.

Parallelization: many

of the same thing at the same
time.

Concurrencﬂ: many ’chings ot the

same time.

61



62

Chapter 3 | Parallelization and data grouping

Parallelizing the job

This is a good time to review the state of the last streaming job we studied. You should
have a traffic event job that contains two components: a sensor reader and a vehicle
counter. As a refresher, the job can be visualized as the below image.

Source executor

sensor
reoder

Opera’cor executor

vehicle
counter

This implementation has worked for the previous chapter. However, we will now intro-
duce a new component we decided to call the event dispatcher. It will allow us to route
data to different instances of a parallelized component. With the eventDispatcher
the chapter 2 job structure will look like the following. The image below is an end result
of reading through this chapter and working through the steps to build up the job. By the
end of this chapter, you will have added two instances of each component and under-
stand how the system will decide to send data to each instance.

Source executor

Source instance executor O

sensor
reader

Source instance executor |

sensor
reoder

The ups’cream
componen’c executor

The downstream /

Opera’cor executor

Operodror instance executor O

vehicle
counter

Operodtor instance executor |

vehicle
counter

componen’c executor
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Parallelizing components

The following image shows the end goal of how we want to parallelize the components
in the streaming job. The event dispatcher will help us distribute the load across down-

stream instances.

Source executor Operoucor executor
Source instance executor O Operator instance executor O
sensor vehicle
reoder counter
.4 p.4

/

Soufrce instance executor |

Opera’cor instance executor |

sensor vehicle
reoader counter
y 4 /

[ /

Two instances of the vehicle
counter component exist.
This can be considered a
parallelized component.

Two instances of the sensor
reader exist. This con be
considered a parallelized
componen’c.

How does the event
dispatcher decide which event
goes to which instance of each
component?
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Parallelizing sources

Source executor

First, we are only going to parallelize the data
sources in the streaming job from one to two. To Port 9990 instonce O
simulate a parallelized source, this new job will need
to listen on two different ports to accept your input.
The ports we will use are 9990 and 9991. We have
updated the engine to support parallelism, and the
change in the job code is very straightforward:

P_or_)(??Q_l - - -l | instancel

Stream bridgeStream = job.addSource(
new SensorReader("sensor-reader", 2, 9990)

)7

To run the job, you need to first create two input terminals and execute the command
with different ports:

\npudt ferminal | \npudr terminal &

$ nc -1k 9990 S nc -1k 9991

Then, you can compile and execute the sample code in a separate job terminal:

$ mvn package
$ java -cp target/gss.jar \
com.streamwork.ch03.job.ParallelizedVehicleCountJobl

At this point you should have three ter- [/~ Networking FYI

minals open to run your job: input termi-

nal 1, input terminal 2, and the job Due to limitations of networking, we cannot

terminal. Input terminals 1 and 2 are have more than one process, thread, or com-

where you will be typing vehicle events to | pute instance listening on the same port.

be picked up by the streaming job. The Since we have two of the same sources run-

next page will show some sample output. ning on the same machine for our learning
purposes, we have to run the extra instance
of source on a different port.
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Viewing job output

lnpu’c terminal |
| EE——

Input terminal & Job terminal

—_—

car

truck _

SensorReader instance 0 -—>
car
VehicleCounter

car: 1

instance 0 -—>

SensorReader:: instance 0 -->

truck
VehicleCounter
car: 1

truck: 1

instance 0 -—>

N

SensorReader::
van
VehicleCounter

instance 1 -->

instance 0 -—>

TWo sensor readers
are pul\‘mg in dato.

car:
truck: 1
van:

1

1

SensorReader::

instance 1 -->

Source executor

N

instance O

instance |

car

VehicleCounter
car: 1
truck: 2
van: 1

instance 0

One vehicle counter is
receiving events from both
sensor reader instances.

-

Operod:or executor

7
/

A C
P h instance O J

gvent d'\spa’ccher tells the event where to

90 next. All events after the source are

routed to the same s'mgle vehicle counter
instance ’chrouah this event dispoeccher.
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Parallelizing operators

Running the new job

Now, let’s parallelize the VehicleCounter operator:

bridgeStream.applyOperator (

new VehicleCounter("vehicle-counter", 2));
Keep in mind we are using two parallelized sources, so we will need to execute the same
netcat command as we did before in two separate terminals. For a refresher, each
command tells Netcat to listen for connections on the ports specified in each
command.

\npu’c terminal | lr\pud: ‘erminal &

S nc -1k 9990 S nc -1k 9991

Then, you can compile and execute the sample code in a third, separate job terminal:

$ mvn package
$ java -cp gss.jar \
com.streamwork.chO03.job.ParallelizedVehicleCountJob2

This job that runs will have two sources and operators. It can be represented by the dia-
gram below. The job output follows.

Source executor Opera’cor executor

instance O SO e instance O

instance | instance |
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Viewing job output

Input terminal | Input terminal & Job terminal
L
— e —
car SensorReader instance 0 —-—>
truck —1 car
VehicleCounter instance 0 -->
\ car: 1
I~
e —— van SensorReader:: instance 0 -—>
car truck
VehicleCounter instance 1 -->
\ truck: 1
Did You notice a.pottern thot N )
. SensorReader:: instance 1 -—>
vehicle events are processed b3 the
instances of the vehicle counter van
. VehicleCounter instance 0 -->
operator in turn?
car: 1
van: 1
SensorReader:: instance 1 -—>
car
VehicleCounter instance 1 -->
car: 1
truck: 1

Two sensor readers

are pul\ing in dato.

1
+

[

Source executor

\

instonce O

Operodtor executor

N instance |

from event dispotcher

‘o process.

7
.7 instance O
7 < ’
7

‘ 7’
v R
Two vehicle counters instance |
are receiving dato
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Events and instances A cac is processed by
/— VehicleCounter 0.
VehicleCounter :: instance 0 --—>

car: 1

(Omitted for brevity)
Another car is processed

b5 VehicleCounter I.

VehicleCounter:: instance 1 --—>
car: 1
truck: 1

If you take a close look at the results of the vehicle counter instances, you will see that
both of them receive a different car event. Depending on how the system is set to run this
type of behavior, it may not be desirable for a streaming job. We will study the new con-
cept of event grouping later to understand the behavior and how to improve the system.
For now, just understand that any vehicle can be processed by either of the two tollbooth
instances.

Another important concept you need to understand here is event ordering. Events have
their order in a stream—after all, they all reside in queues, typically. How do you know
if one event will be processed before another? Generally, two rules apply:

+  Within an instance, the processing order is guaranteed to be the same as the
original order (the order in the incoming queue).

+ Across instances, there is no guarantee about the processing order. It is possible
that a later event can be processed and/or finished earlier than another event that
arrived earlier, if the two events are processed by different instances.

A more concrete example follows.



Event ordering

Event ordering

\npudt ferminal | \npudr ferminal & Job terminal

—
car qﬁensorReader :: instance 0 -—>
truck —_ cgr .

[ VehicleCounter :: instance 0 -->
\ car: 1

I—— van \SensorReader:: instance 0 -—>
car truck
VehicleCounter :: instance 1 -—>
truck: 1

SensorReader:: instance 1 --—>

van
VehicleCounter :: instance 0 -—>
car: 1
van: 1

Operod:or executor

SensorReader:: instance 1 -—>
car
:h instance O VehicleCounter :: instance 0 -—>
ﬁ car: 1
truck: 1

car, truck, van, ca, ...

)

instance |

Let’s look at the four vehicle events that were entered in the input terminals. The first
and third vehicles are car and van, and they are sent to VehicleCounter
instance 0, while the second and the fourth events truck and car are routed to
VehicleCounter instance 1.

In the Streamwork engine, the two operator instances are executed independently.
Streaming engines normally guarantee that the first and the third vehicles are processed
in their incoming order because they are processed in the same instance. However, there
is no guarantee that the first vehicle car is processed before the second vehicle t ruck,
or the second vehicle t ruck is processed before the third vehicle van because the two
operator processes are independent of each other.
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Event grouping

Up until now your parallelized streaming job had vehicle counter instances that were
getting events randomly (really, pseudorandomly) routed to the vehicle counter instances.

Acaris processed b5

. VehicleCounter O.
SensorReader:: instance 0 -->

The streaming job has % car

VehicleC t :: instance 0 -—>
no predictable behavior enteietounter t
car: 1
of how it will route
doto to either

(Omitted for brevity) .
vehicleCounter 0 or Another car is processed b}j

vehicleCounter 1. SensorReader:: instance 1 --> vepicleCounter 1.
\h car ’/—/
VehicleCounter:: instance 1 -->
car: 1
van: 1

This pseudorandom routing is acceptable in many cases, but sometimes you may prefer
to predictably route events to a specific downstream instance. This concept of directing
events to instances is called event grouping. Grouping may not sound very intuitive, so let
us try to explain a bit: all the events are divided into different groups, and each group is
assigned a specific instance to process. There are several event grouping strategies. The
two most commonly used are:

+  Shuffle grouping—Events are pseudorandomly distributed to downstream
components,

«  Fields grouping—Events are predictably routed to the same downstream
instances based on values in specified fields in the event.

Normally, event grouping is a functionality baked into streaming frameworks for reuse
by developers. Flip through the next few pages to go a little deeper into how these two
different grouping strategies work.
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Shuffle grouping

Shuffle grouping defined in few words is the random distribution of data elements from
a component to a downstream operator. It allows for a relatively even distribution of load
to downstream operators.

Round robin is the way to perform a shuffle grouping in many frameworks. In this
grouping strategy, downstream instances (aka the incoming queues) are picked in equal
portions and in circular order. Compared to a shuffle grouping based on random num-
bers, the distribution can be more even, and the calculation can be more efficient. The
implementation is similar to the diagram below. Note that in the diagram the two
truck vehicles are counted by two different VehicleCounter instances.

Queue elements
alternate which vehicle
counter instance ’cheg
will be delivered to.

Operodror executor

(cT T T o Ls === === 2 B instance O

L ‘_‘:::::::::.Lk instance |

The queue from an
upstream component
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Shuffle grouping: Under the hood

To make sure that events are routed evenly across instances, most streaming systems use
the round robin method for choosing the next destination for their event.

The counter starts at 0. The counter is
incremented ofter each request to evenly
spread events across instances. It will be reset
to 0 once it exceeds the number of available
downstream instances (the paralielism.

counter = 0;
while (e = readEvent()) {
event group = counter;
counter++; gvent group O

Q

counter %= parallelism; Operador executor

--"
- -
JS—— <’—
~
~
~
~
~

A -
\ncom‘mg events instance |

event group |

| 3| instance O

Shuftle grouping is a. round robin
imp|ementa’cion under the hood in our
Streamuwork engine.
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Fields grouping

Shuffle grouping works well for many use cases. However, if you needed a way to predict-
ably send elements, shuffle grouping won’t work. Fields grouping is a good candidate to
assist with a predictable routing pattern for your data processing needs. It works by mak-
ing a decision on where to route data based on fields out of the streamed event element
(usually designated by the developer). Field grouping is also called group by or group by
key in many scenarios.

Cars ond vans will oduuaﬂs be
routed to this instance.

k Opera’cor executor
|

(T T T T T IommmmTRTITEET :} B | instance 0 | «

HonuL
Uon
UoA
X109

ol
UoA

b e e e e e e e = = l::::::::::.Lk instance | | <

The queue $rom an

upstream component
Trucks will oduuags be
routed to this instance.

In this chapter’s streaming job, we take each vehicle that comes in from the bridge and
send them to either vehicle counter 0 or vehicle counter 1 based on the vehicle type, so
the same type of vehicle is always routed to the same vehicle counter instance. By doing
this, we keep the count of individual vehicle types by instance (and more accurately).
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Fields grouping: Under the hood

To make sure the same vehicle events are always assigned to the same group (routed to
the same instance), typically a technique called hashing is used. Hashing is a widely used
type of calculation that takes a large range of values (such as strings) and maps them

onto a smaller set of values (such as integer numbers).

while (e = readEvent()) {
long hash = hashEvent(e);

event group = hash % parallelism; Operator executor
}
| | instance O

lncom‘mg events instance |

event group O

event group |

The most important property of hashing is that for the same input, the result is always
the same. After we get the hashing result (usually some large integer, such as 98216,
called the key), we perform this calculation:

key % parallelism

Divides the Ke5 bﬂ the parallelism and
returns the remainder to decide which
instance of the downstream operator the
event will be assigned to. In the case that
there are two instances, the event whose
K63 is 98316 will be routed to the incoming
queue of instance O because 983l % &
equals 0.
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Event grouping execution

The event dispatcher is a piece of the streaming system that sits between component
executors and executes the event grouping process. It continuously pulls events from its
designated incoming queue and places them on its designated outgoing queues based on
the key returned from the grouping strategy. Keep in mind that all streaming systems
have their own way of doing things. This overview is specific to the Streamwork frame-
work we provided for you.

The event dispatcher The event dispatcher places
con’cinuouslB pul\s new Grouping logic is executed the event on one of the
events off of the uP 3193 . of the multiple outgoing
. . during the transition from
incoming queue. the | . queues based on the result
e incoming queue to the i )
Incoming queue outgping queues. of the grouping execution.

The upstream component The downstream operator
instance executor instance executor will
con’dnuouslg push events con{r'\nuouslB pull events
1o the incoming queue. from its assigned queue.

This constant movement of dato.
$rom one queue to another creates a.
stream.
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Look inside the engine: Event dispatcher

The event dispatcher is responsible for accepting events from the upstream component
executor, applying the grouping strategy, and emitting the events to the downstream
component.

The event dispotcher conkinuousl3 pulls
dota $rom the incoming queue to be

placed on the selected outgoing queue. event dispatcher

process starts.

Incoming queue

s’croucesg.

-o
b
)
g
&
g

|
e — I E 1
H i
In each loop, event R immmm-=- ti }
dispatcher pulls : :Ou 0iNa aueue
| Ovigong 4
incoming queue, no :

applies grouping
s’craecesg ‘o choose
an outgoing queue
for each event, and
then emits.

nfter on event
dispatcher
execution, the
process loops

1
1
1
1
1
1
1
1
1
1
1
1
1
events $rom the 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 back over.
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Applying fields grouping in your job

By applying fields grouping to your job, it will be much easier to keep an aggregated
count of different vehicle types, as each vehicle type will always be routed to the same
instance. With the Streamwork AP], it is easy to enable fields grouping:

bridgeStream.applyOperator(
new VehicleCounter("vehicle-counter", 2, new FieldsGrouping())

);
F\Pplﬂ fields grouping.

The only thing you need to do is to add an extra parameter when you call the apply-
Operator() function, and the Streamwork engine will handle the rest for you.
Remember that streaming frameworks help you focus on your business logic without
worrying about how the engines are implemented. Different engines might have differ-
ent ways to apply fields grouping. Typically, you may find the function with the name of
groupBy () or {operation}ByKey () in different engines.

To run the example code, it is the same as before. First, you need to have two input
terminals with the following commands running, so you can type in vehicle types.
Then, you can compile

\npudt ferminal | \npudr ferminal &

S nc -1k 9990 S nc -1k 9991

and execute the sample code in a third, separate job terminal:

$ mvn package
$ java -cp target/gss.jar \
com.streamwork.ch03.job.ParallelizedVehicleCountJob3
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Event ordering

If you run the above commands, the job terminal will print an output similar to the
following.

Input terminal | Input terminal & Job terminal
— —
f————— — .
car » SensorReader :: instance 0 -—>
truck — ] car
VehicleCounter :: instance 0 -->

van
‘\\\\\\ car: 1
[~
A .
SensorReader:: instance 0 --—>
truck

VehicleCounter :: instance 1 -->

\\\ truck: 1

SensorReader:: instance 0 -—>

car van

truc;N\\\ VehicleCounter :: instance 0 -->
car: 1
van: 1

SensorReader:: instance 0 -—>

car

VehicleCounter :: instance 0 -->
car: 2
van: 1

SensorReader:: instance 1 --—>

truck
VehicleCounter :: instance 1 -->
truck: 2

el
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Comparing grouping behaviors
Let’s put the shuffle and grouping job outputs side by side and view the differences in
behavior with the same job input. It doesn’t really matter which terminal the input is
from, so we combine them into one. See if you can identify the differences in how each
job output differs.
Job Input: car truck van car truck ..
shufsle Grouping Job Output Fields &rouping Job Output
—
SensorReader instance 0 —> SensorReader instance 0 —>
car car
VehicleCounter instance 0 —> VehicleCounter instance 0 —>
car: 1 car: 1
SensorReader:: instance 0 —> SensorReader:: instance 0 —>
truck truck
VehicleCounter instance 1 —> VehicleCounter instance 1 —>
truck: 1 truck: 1
SensorReader:: instance 0 —> SensorReader:: instance 0 —>
van van
VehicleCounter instance 0 —> VehicleCounter instance 0 —>
car: 1 car: 1
van: 1 van: 1
SensorReader:: instance 0 —> SensorReader:: instance 0 —>
car Car
VehicleCounter instance 1 —> VehicleCounter instance 0 —>
car: 1 car: 2
truck: 1 van: 1
SensorReader:: instance 1 —> SensorReader:: instance 1 —>
truck truck
VehicleCounter:: instance 0 —> VehicleCounter:: instance 1 ->
car: 1 truck: 2
truck: 1
van: 1
1 e -
T
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Summary

In this chapter, we’ve read about the fundamentals of scaling streaming jobs. Scalability is
one of the major challenges for all distributed systems, and parallelization is a funda-
mental technique for scaling them up. We’ve learned how to parallelize components in a
streaming job and about the related concepts of data and task parallelisms. In streaming
systems, if the term parallelism is used without data and task, it normally refers to data
parallelism.

When parallelizing components, we also need to know how to control or predict the
routing of events with event grouping strategies to get the expected results. We can
achieve this predictability via shuffle grouping or fields grouping. In addition, we also
looked into the Streamwork streaming engine to see how parallelization and event
grouping are handled from a conceptual point of view to prepare for the next chapters
and real-world streaming systems.

Parallelism and event grouping are critical because they are useful for solving a criti-
cal challenge in all distributed systems: throughput. If a bottleneck component can be
identified in a streaming system, you can scale it horizontally by increasing its parallel-
ism, and the system is capable of processing events at a faster speed.

Exercises

1. Why is parallelization important?

2. Can you think of any other grouping strategy? If you can think of one, can you
implement it in Streamwork?

3. The field grouping in the example is using the hash of the string. Can you
implement a different field grouping that uses the first character instead? What
are the advantages and disadvantages of this new grouping strategy?
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In this chapter

. stream fan-out
. stream fan-in

« graph and DAG (directed acyclic graph)

‘ ‘ Bad programmers worry about the code. Good ’ ’
programmers worry about data structures and their
relationships.

—LINUS TORVALDS

In the previous chapters, AJ has built a streaming job and then scaled it up.
It works well for monitoring vehicles on the bridges. However, the structure
of the job is quite simple, as the job is pretty much a list of operators. In this
chapter, we are going to learn how to build more complicated streaming
systems to solve additional problems in the real world.

81
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A credit card fraud detection system

Sid has been impressed by the vehicle counting system AJ built, and he is thinking of new
problems to solve with stream processing technology now. The one he is mostly inter-
ested in is a fraud detection problem, but he has one concern: the new system will be
more complicated and requires very low latency. Can it be solved with a streaming

system?

impor’comce.

1t might be o bit more
complicated than the tollbooth
sBS’cem, but this shouldn’t be a
problem. Let’s look into it.

\ A\

The streaming job built in the previous two chapters is lim-
ited in capability. Every data element that enters the job is
required to pass through both components in a fixed order:
the sensor reader and then the vehicle counter. There is no
conditional routing of data for edge cases or errors that could
occur in streaming systems. You could visualize the path of
the data elements in your streaming job as a straight line.

Vd like our $raud detection solution to be
focused on the stage when people poy for 3oods/
services with their cards. | expect a. lot 0% transactions to How
through the system. Speed and aceuracy is of the utmost

sensor
reoder

\/

vehicle
counter
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More about the credit card fraud detection
system

In this chapter, we are going to build a credit card fraud detection system. It will be more
complicated than the tollbooth problem we had before.

¥ 1 understand the requirements correctly, we want
o sgs’cem with multiple rule-based anodgzer operodors
that evaluote the transactions and score the risks. At the end
we will need a classifier that combines all the scores $rom
each anodﬂzer and makes a. decision.

/
Y5 O

In the past, all of our jobs have executed
sequentially; this could be a. bottleneck
for us with heaxy load, How could we execute
the $raud detection operations
more e?—?»icienﬂl.j?

The analgzers appl5 rules to
evoluote the risks of the transactions.
All the risk scores are combined ot the end
as one result. We can start from a few
simple rules for now.

v
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The fraud detection business

The card network sits between the stores and the
banks. As transactions enter the card network, |ogic is
performed to give the pawjing banks as much informadion

os possible. This helps them make the decision o pay
afransaction or not.

The card network routes

Brick and mortar transactions 1o be paid to
locotions, online the correct bank ofter
businesses, and even collecting as much banke make a. decision £o
mobile devices con all informadtion as it con to i
take credit card help banks make o ai\i‘:r?e :\rs:ss:?::\“ to
ments. decision to poy for the 3 ua

Py charges. The froud informadtion gothered b5

detection system lives the card network.

here to Seneroece risk

scores.

AN
i
N
\
\
N
AN
\
[eee | \
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Streaming isn’t always

. . Transoction
a straight line cource
I
We can build the system like the tollbooth system. First, ¥
the transaction source component is responsible for accept- Average ticket
ing transaction events from external systems. Then, the analyzer
analyzers are applied one by one, and risk scores are added I
into the events. Finally, a score aggregator makes a final v
decision from the scores. windowed proximity
The solution works, but it is not ideal. New analyzers analyzer
will be added in the future, the list will grow, and the end- !
to-end latency will increase. Plus, the job could be harder v
to maintain when there are many analyzers. Windowed transaction
count analyzer
I
*
‘ ,f !5 Score
by v v“ The $irst solution was not oggregodor
L%

ideal. every analgzer we added
increased la’cencﬂ.

Another option is to build the system like the diagram below. All three analyzers con-
nect to the transaction source and run independently. The score aggregator collects
results from them and aggregates the scores to make a final decision. In this solution, the
end-to-end latency won’t increase when more analyzers are added.

Tronsaction
source
PR B S
_ _ - - - | -~ -~ -~ -
- v T~
nveraae ticket windowed proximi’ca windowed transoction
anodg?,er omodg?,er count omodg?,er

~ 1 -
~ 1 -

~ -

\N* * _ -
Score

agsresa’cor
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Zoom into the system

I. AP Sa’cewaa accep'cs

transactions.

ab. The
fransaction is
a55nchronousI3
routed to o
fraud detection
Jjob.

/aa. API gateway Forwards
the transactions to AN

R fransaction presen’cer Vieo

R HTTP.

SN 0 0000000000000000000000000000000000000000000000000000000000000000

eecccccccecqeccccccccce

o/

\\

APl
Sa’ceuoaﬂ

b. Boanks moke o
decision to pay Sor
the transaction or
not based on the
fraud score.

~

U
ol

fransaction
presen’cer

qeccccccccce

'

1. The decisions are

score

aggrega’cor

ocoov-oooooooo

cccccogoecd

. The

[

: fransaction
presenter pulls

! the fraud score
: $rom the

: database and

: : presents it to

: ’che poying bank,
: odong with the

¢ fransaction
\’csel?—

3. The streaming job processes the
tronsactions, creates a froud
score for each transaction, and
stores them into a datobase.

: v sent back.

e transaction
F sowrce
. E -~ 1 ~J E
. I average windowed windowed
H ticket proximi’cﬂ xn count

. 41 oanalyzer analyzer anoluzer

* 4

ecccccccccccce

000000000000 00000000000000000000000000000000000 0
©00000000000/£000000000000000000000000000000000000000000000 eecccoce

4. The $raud score

datastore holds

o $roud score for

each transaction.
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The fraud detection job in detail

Let’s take a deeper look into the fraud detection job and see each component’s

responsibility.

How do we know if a transaction is potentially fraudulent?

Fraud scores can range from 0-3. A score of 0 means no fraud is
detected by any analyzer, and a score of 3 means fraud is detected by

all analyzers. Each analyzer will add a point to the score. We can con-
sider a transaction potentially fraudulent with a score of 2 or greater.

The transaction source pud\s events
as ’cheB enter the API Sa’cewaﬂ ‘o
the credit card 35s’cem. It will
create 3 different instances of the
same transaction and fon them
out to the anod5zers.

The averoge ticket
anodgzer looks at the
amount spent on a
transaction. 1§ the amount

The windowed transaction count
analyzer looks for the transactions
from the same account in a specified
window of time. ¥s unl‘\Ke|3 thot
someone would use the same card
multiple times in a. small window. 1§ it
sees this behawvior, it will add 1 to the

falls out of the normal fransaction fraud score.
spending history of the source
customer, then it will add | NS
to the $raud score. ‘_f"’ v -~
average windowed windowe
k_/' ticket proximity +xn count

analyzer anolyzer

score

asgrega’cor

The windowed proxim‘\’cﬂ ounodﬂzer
looks for transactions $rom the
same account in a specitied window
of time. ¥'s unlikely that someone
would phgsicaJ\S swipe a.cord at o
location, then swipe it again 200
miles owow, 1§ it finds this behavior,
it will add. 1 to the $raud score.

The score aggregator waits Sor a
small window of time for each
upstream cmodgzer and then
agoregates the total $raud score.
After this window has expired, it will
write the score to the dotabase.
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New concepts

In chapter 2, you learned the moving parts in a streaming system, the data sources and
the operators, and the connections. We also looked at how the underlying engine han-
dles them. These are all very important concepts that we will keep using through the
whole book.

In this chapter, we are going to look into streaming jobs that have more complicated
structures. The new diagram looks more complicated than the old straight-line diagram.
This is correct, but there is nothing to worry about.

fransaction
source

-1 ~J

- v <l
average windowed
ticket proximi’cg
analyzer analyzer

score

aggrega’cor

Before moving forward, let’s look at a few new concepts we can learn from this new
diagram:

+  Upstream and downstream components
+ Stream fan-out

+ Stream fan-in

+  Graph and DAG (directed acyclic graph)

With these new concepts, we can construct more complicated streaming systems to solve
more general problems.



Upstream and downstream components

Upstream and downstream components

Let’s start with two new concepts: upstream components and downstream components.
They are pretty simple and straightforward.

Overall, a streaming job looks like a series of events flowing through components. For
each component, the component (or components, as we will discuss later) directly in
front is its upstream component, and the component directly behind is its downstream
component. Events flow from an upstream component to a downstream component. If
we look at the diagram of the streaming job we built in the previous chapter, events flow
from the sensor reader to the vehicle counter. Therefore, the sensor reader is the upstream
component, and the vehicle counter is the downstream component.

A s’creaminajob

The sensor reader is Sensor Between these two
the upstream reader components, the sensor
component of the \_/ X reader is the upstream
vehicle counter. X component, and the
4 vehicle counter is the
vehicle downstream component.
counter

The vehicle counter is
the downstream
component of the
sensor reader.
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Stream fan-out and fan-in

Now, let’s look at the new diagram proposed by AJ. It looks quite different from the pre-
vious job overall. The major difference is that one component may have more than one

upstream or downstream componen

The transaction source component has three downstream components connected to
it. This is called stream fan-out. Similarly, the score aggregator has three upstream com-
ponents (we can also say that the three analyzers have the same downstream compo-

nent). This is called stream fan-in.

Streom fan-out means a
component has multiple
downstream components.
This is o stream fan-out
between the transaction

t.

source and the omodgzers. fronsaction
source
PR R
“ _V RIS
average windowed windowed

ticket
analuzer

proximi’cg

analyzer

score

agsregod:or

Streom fon-in means
o component has
mud’dple upstream
components. Thisis a
stream fon-in
between the anodgzers
and the score

aggrega’cor.

diagram. Does the same event 90 to

Pm not sure how to read this

all three anodﬂzers?
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Graph, directed graph, and DAG

The last three concepts we will cover in this chapter are graph, directed graph, and DAG.

A

If every edge in a graph has a direction (from one vertex to
another one), this graph is called a directed graph. The dia-
gram to the right is an example of directed graph with five
vertices and seven directed edges.

e) [

First of all, a graph is a data structure that consists of a
set of vertices (or nodes) and edges (also known as connec-
tions or lines) that connect pairs of vertices. Two data
structures used by developers, tree and list, are examples
of graphs.

A special type of directed graph
is a directed acyclic graph, or a
DAG. A DAG is a directed
graph that has no directed
cycles, which means that in
this type of graph, there is no way to start from a vertex and
loop back to it following directed edges.

The diagram to the left is a DAG because from any of the
vertices, no path can be found to loop back to itself. In the
directed graph diagram, vertices C, D, and E form a cycle;
hence, this graph is not a DAG. Note that there is another

cycle on vertex B because it has an edge looping back to itself directly.

most s{reamingjobs can be
presen’ced 0s DAGS.

AN
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DAG in stream processing systems

DAG is an important data structure in computer science and in stream processing sys-
tems. We won’t jump into too much mathematical detail here, but it is important to
know that DAG is a common term in the streaming world.

It is convenient to represent how events flow through a system with a directed graph.
Aloop in a directed graph means that events can be looped back and reprocessed in the
same component again. It needs to be handled very carefully because of the extra com-
plexity and risks. In some cases, loops could be necessary, but they are relatively rare.
Most stream processing systems don’t have loops; hence, they can be presented as DAGs.

fransaction
source

-~ 1 ~J

- L/ S~
windowed
proxim'\kg

anolyzer

score

asgregodror

Note that, from this chapter forward, when we draw a job diagram, we are going to draw
a DAG. It will only include the logical components of the job without the engine objects,
such as the executors and event dispatchers (unless they are necessary), like in the dia-
gram above, so we can focus on the business logic without worrying about the details in
the engine layer. Parallelism is not included either because it is not business logic related.
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All new concepts in one page

We have talked about quite a few concepts in this chapter. Let’s put them together in one
page, so it is easier to distinguish the relationships between them.

events flow $rom the transaction source +o
the anodgzers. The transaction source is the
upstream component and the amodgzers are
the downstream components. The
transaction source has multiple downstreom
components connected to it. This is called
“streom fon-out.”

fransaction
source
- -~ =s ~
- v Tl A "
windowed Similourl\tj, the score
prox'\mi{g aggrega’cor componen’c
anolyzer has multiple upstreoam
sl ! - components. This is
oaVe - C \_/ called “stream $on-in.”
score
aggregodror
— _

'

In general, a. streaming job can be presented as a graph,
more specifically, o directed acyclic graph (DA,
because there are no directed cﬁcles in the directed
Sraph. The vertices are the components, and the edges
are the connections between the components.
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Stream fan-out to the analyzers

It is time to jump into our system now,
starting from the stream fan-out part.
The stream fan-out in the fraud detec- \ source
tion system is between the source com-

ponent and the analyzer operators. With
the Streamwork API, it is straightfor-
ward to link the stream coming from the

source component to the evaluators. We
can connect the source and evaluators,

Streom fan-out | transaction

as in the code below.
score
aggregodtor

Job job = new Job();

Stream transactionOut = job.addSource(new TransactionSource());

Stream evalResultsl = transactionOut.applyOperator(new
AvgTicketAnalyzer());

Stream evalResults2 = transactionOut.applyOperator(new
WindowedProximityAnalyzer());

Stream evalResults3 = transactionOut.applyOperator(new
WindowedTransactionAnalyzer()); R

multiple operators are

applied ‘o the same streoam.

Basically, multiple operators, in this case the evaluators, can be applied to the same
transaction stream from the source component. In the runtime, every event emitted
from the source component will be duplicated three times and sent to the three
evaluators.

A stream fan-out is one component with
multiple downstream components.
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Look inside the engine

The real work happens inside the engine. In the Streamwork engine, when a new opera-
tor is hooked up to a stream, a new queue is created between the operator’s event dis-
patcher and the instance executors of the component that generates the stream. In other
words, one instance executor can push events into multiple outgoing queues.

The instance executor

ot a component

B S

—

outgoing queue. |

1
1
:I P
T I i<
1 H
! v
1
1l
II
|I ,,,,,,,,,,,,
1
1 \4
| o
I 1Push events to the!
I 1
1
1

when a component emits
anew event, the event is
duplicated and put into all
the connected ou’cgoing
queues by the executor.

gvent dispatcher pulls
events from the
connected incoming
queue and routes them

The event dispatcher %o the instances.

of one downstream
componen’c

- |
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There is a problem: Efficiency

Now, every evaluator should have a copy of the
transaction events, and they can apply their
evaluation logic. However, this solution is not
very efficient.

Each event is a transaction record. It con-
tains a lot of the information about the trans-
action, such as merchandise id, transaction id,
transaction time, amount, user account, merchandise catego-
ries, customer location, and so on. As a result, events are relatively large
in size:

The memory usage seems to be
too high. How can | improve it to be
more eSficient?

class TransactionkEvent extends Event ({
long transactionId;
float amount;
Date transactionTime;
long merchandiseId; qg
long userAccount;

In the current solution, every event is duplicated multiple times because they are pushed
to different queues. Because of the different queues, different analyzers are able to pro-
cess each event asynchronously. These fat events are transferred through the network
and loaded and handled by the analyzers. In addition, some analyzers don’t need or can’t
process some of the events, but these events are still transferred and processed. As a
result, the memory and network resource usage are not efficient and can be improved,
which could be important when event traffic is high.
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Stream fan-out with different streams

In stream fan-out, different outgoing queues don’t need to be the same as each other. The
word different has two meanings here:

+ An emitted event could be pushed into some outgoing queues but skip others.

+ Furthermore, events in different outgoing queues toward different downstream
components could have different data structures.

As a result, only the necessary events with necessary fields are sent to each evaluator.

In the first version, the +roansoction
streams have the some source
set of events with the /_\ -
same dota. structure. AT v Tl
“ . —
averoge windowed windowe

ticket
anolyzer

™xn count
anoluzer

proximi’cﬂ

analyzer

The two DAGS look the same, but the Ve
streams are different. score
aggresa’cor
fransaction
source

avemge
ticket
analyzer

©v

In the second version,
the streams can be

difSerent from each score
other (have different aggregodor
event data structure

ond different sets of

events).
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Look inside the engine again

We have learned that one component executor can have multiple outgoing queues.
Previously, the executor just pushed the same event to all the outgoing queues connected
to the event dispatchers of the downstream components. Now, to support multiple
streams, the executor needs to take the events emitted from each component and puts
them into the correct outgoing queues.

The component object provides this information via channels. Different events are
emitted into different channels, and the downstream components can choose which
channel to receive events from.

In the first version, all the
queues have the same
set of events with the

came data structure. gach event dispoeccher

connects to one
downstream component.

In the second version, the
output stream of the source
object has multiple output
channels. gach channel has

Source executor D:D—><> different sets of events and

the event data structure

source D:D_><> can also be different in

D:D_> <> diferent channels.

s |, A< >
Lo

<>

Source

This multi-channel fan-out gives us more

flexibility. With more flexibility, we have more 2ach outgoing queue can
options to tune the job to make it more receive events Srom on
efficient. output channel of the
source object.
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Communication between the components
via channels

To support this new type of stream fan-out, the component and the executor need to be
updated:

+ The component needs to be able to emit events into different channels.

+ The executor needs to take events from each channel and push them into the
right outgoing queues.

+ The last piece is that the downstream component needs to be able to select a
specific channel when connecting to it via applyOperator().

The output of the component was o
list of events before. Now it is o map
of channel names 4o a list of events:

default: [....]
amount_only: [...] when a. component is added into

location_related: [..-] the job (appl5 %o the output stream
of its upstream component), it can
select o speci?ic channel and
register to it, for example:

"location_related"

iPush events to the! J & ! ED:]
i outgoing queue. il

The executor processes the channels
one b3 one, push‘\ng the events in
each channel to the outgoing queues
that are reg'\s’cered ‘o the channel.



100

Chapter 4 | Stream graph

Multiple channels

transoction
source

With multichannel support, the fan-out in the

fraud detection system can be modified to send -

only necessary fields in events to the evalua- -7 ; Tteel
tors. Firstly, in the TransactionSource
class, channel information can be specified

~

windowed

windowed

. proximity
when events are emitted. Note that the same analuzer
incoming event can be converted into differ- ~ | I
ent events in different channels. B T~ -7
score
The event is emitted into aggresa’cor
the default channel.

Choose another channel to
push events into.

eventCollector.add(new DefaultEvent(transactionEvent));
eventCollector.add("location _ based",
new LocationalEvent(transactionEvent);

The events in this channel have
different data structures.

Then, when an evaluator is added into the streaming job via the applyOperator()
function, a channel can be specified first.

Job job = new Job();
Stream transactionOut = job.addSource(new TransactionSource());

A default channel is used when no channel
is selected to applg the operadtor.
Stream evalScoresl = transactionOut
.applyOperator(new AvgTicketAnalyzer());
Stream evalScores2 = transactionOut
.selectChannel("location _ based") 4——/“5?:0‘?‘0 channel is
.applyOperator(new WindowedProximityAnalyzer()); selected to °—PP‘5

Stream evalScores3 = transactionOut ’cheoperodror.
.applyOperator(new WindowedTransactionAnalyzer());
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Stream fan-in to the score aggregator

The evaluators receive transaction )
. transaction
events and perform their own evalua-
. . source
tions. The output of each evaluator is a
risk score for each transaction. In our PR
system, the risk scores of each trans- “_ y —

windowed

prox‘\m'\’cg

analyzer

averoge
ticket
anolyzer

action are sent to the score aggregator windowed

component to make the decision. If
fraud is detected, an alert is written into

a fraud transaction database. R Vo -~ -
You can see from the diagram that ccore
the score aggregator operator takes input Streom fan-in
. aggregactor
from multiple upstream components—

the evaluators. You can also think of it

in a different way: the output streams

from the evaluators are merged, and the events in all of them are sent to the score aggre-
gator operator in the same way. This is a stream fan-in.

One thing worth mentioning is that, in the score aggregator operator, events from dif-
ferent streams are treated in the same way. Another case is that the events in different
incoming streams could have different data and need to be used differently. This second
case is a more complicated stream fan-in that could be the focus of a full chapter. At the
moment, let’s focus only on the simple case.

mul’ciple streams
Stream evalScoresl = ... are merged into one
Stream evalScores2 = ... Streams object.
Stream evalScores3 = ..

Operator aggregator = new ScoreAggregator(
"aggregator", 2, new GroupByTransactionId());

Streams.of (evalScoresl, evalScores2, evalScores3)
.applyOperator(aggregator);

The ScoreAggregator operator is opplied on the Streams
object. Note that GroupByTransactionId is a subclass of
FieldsGrouping to make sure the scores for a specific
transaction are sent o the same agg’regodror instance.
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Stream fan-in in the engine

Stream fan-in is straightforward in the Streamwork engine. The incoming queue of a
component (connected to its event dispatcher) can be used by multiple upstream com-
ponents. When an event is emitted by any of the upstream components (in fact, by an
instance of the component), the event will be put in the queue. The downstream compo-
nent pulls events from the queue and processes them. It doesn’t distinguish between who
pushed the events into the queue.

Oomponen’c executo OOmponen’c executo

Component D:]:] _><>—> Component

Component executo The events in the queue
Component are then consumed by the
downstream component.

The events emitted $rom every

componen’c executo upstream component are pushed
into the same outgoing queue.

(‘,omponen’c

As we discussed before, the queue
decouples the upstream and downstream

components.
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A brief introduction to another
stream fan-in: Join

In your case this oo more
complicated type of stream fan-in.
You wouwld use whot streaming people
call o Join.

well, this is greod; but what it |
have to merge events ot a different

type?

‘)
¢ 9

We mentioned that, in addition to the stream fan-in used in the exam-
ple job, there is a more complicated type of fan-in. We will present a -
brief introduction to it, so you can have a better idea of all types of
fan-ins and fan-outs.

In the simple stream fan-in, all incoming events have the same data structure and are
treated the same way. In other words, the incoming streams are the same. What if the
incoming streams are different from each other and need to be
combined together? If you have ever used any databases, you {
should have some idea of an operation on multiple tables: join. If ~ user_id: 00,

AN»

you don’t know it, or you have forgotten it (we all know how reli- _name: Tim
able human memory is), no need to worry—it is not a
prerequisite.

In databases, the join operation is used to
combine columns from multiple tables. For
example, a table of user-id and name and
another table of user-id and phone—-num- ~< - -
ber can be joined to create a new table of et —t—
user—-id, name and phone-number
by matching the user-id column in
the two original tables. In the stream- {
ing world, the basic purpose of the user_id: 00l y
join operation is similar: joining _phone_number: 1334S
fields from multiple data sources.

However, relative to database
tables, streams are much more
dynamic. Events are accepted and processed continuously, {
and matching fields from multiple continuous data sources
requires a lot more considerations. We are going to stop here
on the basic concept of join and leave further exploration
of this topic to its own chapter.

Join operoecor

user_id: 00l,
noame: Tim,
phone_number: 1334S
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Look at the whole system

Now that we have discussed stream fan-out and fan-in one by one in the previous sec-
tions, let’s put them together and zoom out to take another look at the whole system.
From a high level, the job can be represented as the graph below; sometimes we call it
the logical plan. It represents the logical structure (components and their connections)
of the job.

The transaction source component
accepts transaction events $rom
external SBs’cems. The events are
preprocessed and emitted into

gach downstream component con be
hooked up to o speci¥ic stream
ac(‘,ording +o the data it needs.

mud’c'\ple output streams.
gach evaluoator
fronsaction wmgonen& evaluotes
source the risk of the
fransaction and
.- - ; T creates o $roud score.
‘_ﬁ_‘a eroge windowed
ticket ProximitB
onolyzer onalyzer
S~ 1
— - The agsrega’cor mokes
score o
The scores $rom all the the decision and sends
evaluators are sent into aagrega’cor it to external s5s’cems.

the aggrega’cor %o
moke the final decision.

In the real world, fraud detection systems will evolve continuously, and new evalua-
tors will be introduced from time to time. With the Streamwork framework, or other
stream processing frameworks, adding, removing, and replacing evaluators is pretty
simple and straightforward.
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Graph and streaming jobs

With the support of stream fan-out and fan-in, now we can build streaming systems in
more complicated and general graph type structures. This is a very important step for-
ward because with this new structure, we can cover more real-world problems.

Here are the DAGs of two example streaming systems. Can you try to imagine what
kind of systems they might be?

,! ~
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/’ I ~
/’ \\
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I
|
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N . 1 //
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\‘ 4 1 ’
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1 4
4
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SO ! 7’
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The example systems

TrafSic
The truth is, these graphs can be so sensor
many things! Here are potential answers RS
for the two diagrams. PSR N
The first diagram could be a simple = y —
traffic monitoring system. The events Accident |[Location-based]] Junction
collected by the traffic sensors are sent detector aggregator optimizer
to three core processors: an accident .
detector, a congestion detector, and a !
junction optimizer. The congestion v
detector has a location-based aggrega- Congestion
tor as a preprocessor. detector

censor reader| |$ensor reader| lsensor reader| |sensor reader

version | version d version 3 version 4
N 4 1 7’
AN
A 7’ ’ 1 4 4
N ‘ Va I
! 1 , 7’
1 7’
Adapter ! ‘
apt : ,/
1 7/
~ 1 Vi e
s ~ 1 7
~ 4
~ N 1 ’
SO 1 , v
A B
—
Fault
detector

The second diagram could be a fault detection system that processes events from sensor
readers in multiple versions. The events generated from the first two versions are not
compatible with the detector; hence, an adapter is needed for them. In the system, all the
sensor readers can work together seamlessly, and it is easy to add new versions or depre-

cate old versions.

After all, stream jobs are not very complicated. The example systems are significantly
simplified compared to the real-world systems. Nevertheless, hopefully you have a better
idea of what streaming systems can do now. In their simplest form, streaming jobs are
components and their connections. Once a streaming job is set up and running, events
flow through the components along the connections forever.
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Summary

In this chapter, we moved forward from the list type system structure we discussed in
previous chapters to a more general type of system structure: the graph. Because events
flow through systems from the sources to the operators, in most cases a streaming job
can be presented as a directed acyclic graph (DAG). Most jobs in the real world have
graph architecture; hence, this is a critical step.

tronsaction
source

-1 ~J

-
- S o

_ - - * ~ - - N
average windowed windowed
ticket proximi’cB
analyzer analyzer

score

aagregod:or

Different from the components in the list type system structure, in a job graph, a com-
ponent can link to multiple upstream components and downstream components. These
types of connections are called stream fan-in and fan-out. The streams coming into a
component or going out of it could have the same types of events or different types.

In addition, we also looked at the Streamwork framework a little bit to see how the
engine handles the connections. Hopefully, this will be helpful for your understanding
of how streaming systems work in general.
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Exercises

1. Can you add a new evaluator to the fraud detection job?

2. Currently, each evaluator takes a transaction event from the transaction source
component and creates a score. Now two evaluators have the same type of
calculation at beginning of their evaluation. Could you change the job for this
case? The result will look like the graph below:
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In this chapter

+ introducing delivery semantics and their impact
« at-most-once delivery semantic
« at-least-once delivery semantic

.« exactly-once delivery semantic

‘ ‘ There’s never enough time to do it right, but there’s ’ ’
always enough time to do it over.

—JACK BERGMAN

Computers are pretty good at performing accurate calculations. However,
when computers work together in a distributed system, like many stream-
ing systems, accuracy becomes a little bit more (I mean, a lot more) compli-
cated. Sometimes, we may not want 100% accuracy because other more
important requirements need to be met. “Why would we want wrong
answers?” you might ask. This is a great question, and it is the one that we
need to ask when designing a streaming system. In this chapter, we are
going to discuss an important topic related to accuracy in streaming sys-
tems: delivery semantics.

109
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The latency requirement of the fraud

detection system

In the previous chapter, the
team built a credit card fraud
detection system which can
make a decision within 20 milli-
seconds for each transaction and
store the result in a database.
Now, let’s ask an important
question when building any dis-
tributed system: what if any fail-
ure happens?

fransoction
presen{:er

fransoction
source

- | ~
LT

v

~
~

~
~

A

Low lateney is eritical for the system. Looks
like our system can finish the process under 30
milliseconds $or each transaction. everything looks
good, right?

windowed

proximi’cﬂ

analyzer

score

agsrega’cor

windowed
+xn count
analuzer

we will need to
account for failure
handling b3 sacri?—icins
accuracy to meet the
requirement when
things 9o wrong,

Sounds 3ood..
Wait. Sacrifice
aceuracy?!! what do you
mean?
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Revisit the fraud detection job

We are going to use the fraud detection system from the previous chapter as our example
in this chapter to discuss the topic of delivery semantics. So let’s look at the system and
the fraud detection job briefly to refresh your memory first.

AP fransaction
. xne ~. T =
Jorks enker Eee Job o 63 ore Satewaﬂ el - -7 Presen&er
\. © oxy

cockon sour® mponeﬂ* : a. Eventg A
ron eod! are 1
Sanned oW 0 ' anned
! out fo ea_ch 1
¥ do !
transacti Wnstream, 1
ansaction OPerator. .
source :
1
- 1
“ —h. !
overage windowed windowed :
ticket proxim'\’cﬂ |
oanalyzer oanalyzer |

/_» score
3.g cores aggregactor

i ar,
finay Scor. € %Lnned in to 4
Caleulote y Jd9regator to ©
the -pinqj resuit

The fraud detection job has multiple analyzers working in parallel to process the trans-
actions that enter the card network. The fraud scores from these analyzers are sent to an
aggregator to calculate the final results for each transaction, and the results are written
to the database for the transaction presenter.

The 20-millisecond latency threshold is critical. If the decision is not made in time,
the transaction presenter won’t be able to provide the answer for the transaction to the
bank, which would be bad. Ideally, we would like the job to run smoothly and meet the
latency requirement all the time. But, you know, stuff happens.
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About accuracy

We make lots of tradeoffs in distributed systems. A challenge in any streaming system is
to reliably process events. Streaming frameworks can help keep the job running reliably
as often as possible, but you need to know what you really need. We are used to seeing
accurate results with computers; hence, it is important to understand that accuracy is
not absolute in streaming systems. When necessary, it might need to be sacrificed.

30, it means that the results could
be inaccurate?

Yeah, results will be
accurate when the
sgs’cem uns normodlg.
However, when some part in
the sgs’cem is not relioble, we
would choose low Ia’cencg over
accuraey and have
inaccurate partial results
instead.

fransaction
source

many ’ch'mgs can go wrong in the
fraud detection system, such as
network issues or instances of
running out of resources. We
need to moke sure the sgs’cem
runs reliabl5.

=" _ .,

score

aggrega’cor

Don’t panic! In the next few pages we will look at solutions with these types of results.
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Partial result

Partial result

A partial result is a result of incomplete data; hence, we can’t guarantee its accuracy. The
following figure is an example of partial result when the average ticket analyzer has tem-

porary issues.

a. The windowed proximi’cH omodgzer

%)
cockions e, T Te and the windowed transaction count
| Theee ’«ans,(e axney ar’( analyzer processed all three
enter e S’?’co coth componen™ transactions and sent the scores out
Lonned O \ successtully.
transaction
source
- - - I = ~ -~
-7 * w4 =~ -5
averoge windowed windowed
ticket prox'\m'\’qj
/ |_analyzer onalyzer
S~ o - 1 _ - -
3. However . RN -7
onalus > the averoge ticket aVe
r‘Oc,e\(;j ?r has some problem when score
Processing the transaction Ta. onl aggregotor \

the scores of transaction Ty and T3
are processed successful l5 and
sent to the score agsregodcor.

It’s common in streaming

systems to make tradeoffs.

deadline.

| see. A po’cen’dalla
inaccurote partiol result of
Ta is more desirable than waj’dng
1o have accurate results and

missing the 30 milliseconds

4. The score aggresa’cor received scores
of Tl and T3 $rom all the anodazers but is
missing one score of Ta. Since it doesnt
wont to miss the deadline, it aggregates
the scores based on the existing doto
and stores the results to databose. The
results of Tl and T3 are accurate but the
result of Ta is a partial result and the
accuracy is not Suaran’ceed.
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A new streaming job to monitor
system usage

Now that we have seen the requirements of the fraud detection job, to better understand
different delivery semantics, we want to introduce another job that has different require-
ments to compare. The fraud detection system has been a hit in the credit card process-
ing business. With the speed of system operations, other credit card companies are
becoming interested in this idea, and with interest increasing, the team decided to add
another streaming job into the system to help monitor system usage. The job tracks key
information, such as how many transactions have been processed.

2ver3 credit card
‘ransaction that

enters the system \/ AT (\The system usage job
R

is fanned out to . .
gives a real-time view

~

Ar ing_job.
each streaming j transaction | ©F the usage of the
source whole sgs’cem. It helps
' assess the current load
] of the system at any
55s:em poin’c in time.
usooe
°F
‘ anodg;er \
. \
\
v \
\
usoge ‘\
writer X \
S o ~A\

Why couldn’t we just
share the transaction source
across the two jobs? Will it be more
efficient?

The requirements are
different between the two jobs.
Plus, the jobs could be easier to
manoge with the isolotion. Therefore,
we have decided it's better not o
share.
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The new system usage job

The new system usage job is used internally to monitor the current load of the system.
We can start with two critical numbers that we are interested in first:

+  How many transactions have been processed? This number is important for us to
understand the trend of the overall amount of data the fraud detection job is
processing.

+  How many suspicious transactions have been detected? This number could be
helpful for us to understand the number of new records created in the result
database.

The counting logic is in the SystemUsageAnalyzer operator:
class SystemUsageAnalyzer extends Operator ({

private int transactionCount = 0;
private int fraudTransactionCount = 0;

public void apply (Event event, EventCollector collector) { Count the
String id = ((TransactionEvent)event) .getTransactionId() A
transactionCount++; g transaction.
Thread.sleep(20) ; Pause for 80 milliseconds $or
the $roud detection job to

finish its process.

Read the detection result of the

boolean fraud = fraudStore.getItem(id) ; ransoction from dokabase. This
operation moy Lail it the dotabase is not
availoble, and an exception will be thrown.

if (fraud) {

fraudTransactionCount++;
! \ Count the $raud fransaction if
collector.emit (new UsageEvent ( the result is true.

transactionCount, fraudTransactionCount));

The operator looks very simple:
+ For every transaction, the value of transactionCount increases by one.

« If the transaction is a detected fraud transaction, the value of
fraudTransactionCount increases by one.

However, the getItem() call in the function could fail. How the job behaves when fail-
ures happen is a key difference between different delivery semantics.
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The requirements of the new system
usage job

Before worrying about the failures, we have a few more things to talk about. First,
let’s look at the requirements of the job. As an internal tool, the latency and accuracy
requirements can be quite different from the fraud detection job:

*  Latency—The 20-millisecond latency requirement of the fraud detection job is
not necessary in the system usage job, since the results are not used by the
presenter service to generate decisions for the banks. We humans can’t read the
results that quickly anyway. Moreover, a small delay when something goes wrong
could be totally acceptable.

* Accuracy—On the other hand, accurate results could be important for us to
make the right decision.

In the system usage job, accuracy is
more important. We need to con¥i3ure the
system to give us the aceurate results even i
some’ching goes wrong,

1s there a. way o wn¥i3ure
accuracy se’cﬁngs in our
streaming engine?

\ A\

Yes, there is o critical con¥i3um’cion
widelg Suppor’ced b3 most engines. Ws
Known os de|iver5 semantics or delivera
3uarantees.

We will walk you through the most common delivery semantics to get you started in
your stream-processing journey. Along the way we will discuss the different ways you can
use streaming systems to guarantee how transactions will be processed and why you
would want to use them.
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New concepts: (The number of) times
delivered and times processed

To understand what delivery semantics really means, the concepts of times processed and
times delivered will be very helpful:

+ Times processed can refer to the number of times an event was processed by a
component.

+  Times delivered can refer to the number of times the result was generated by a
component.

The two numbers are the same in most cases, but not always. For example, in the flow
chart of the logic in the SystemUsageAnalyzer operator below, it is possible that the
get detection result step can fail if the database is having issues. When the step fails, the
event is processed once (but not successfully), and no result is generated. As a result, the
times processed would be 1, and the times delivered would be 0. You may also consider
times delivered as times successfully processed.

! et detection
result. i

l. This step can ail sometimes.
When Lailure happens, the 17~ 77 i
event i Processed, but not ; '
success%llg, and no result ig
generated. As a result, the ;
times processed and times  —---- I

delivered will be di®Serent. i Counttotal !
i transactions. |
N A .
i emitresults. !
H H (e
: ' . eroX .
L ___ 4 x i o0 xS
The (ewi ua\% o e ever
\/ red oY e8!
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New concept: Delivery semantics

Here comes the key topic of this chapter: delivery semantics, also known as delivery guar-
antees or delivery assurances. It is a very important concept to understand for streaming
jobs before we move on to more advanced topics.

Delivery semantics concerns how streaming engines will guarantee the delivery (or
successful processing) of events in your streaming jobs. There are three main buckets of
delivery semantics to choose from. Let’s introduce them briefly here and look at them
one by one in more detail later.

*+  At-most-once—Streaming jobs guarantee that every event will be processed no
more than one time, with no guarantees of being successfully processed at all.

*+  At-least-once—Streaming jobs guarantee that every event will be successfully
processed at least one time with no guarantees about the number of times it is
processed.

*  Exactly-once—Streaming jobs guarantee that every event will be successfully
processed once and only once (at least it looks this way). In some frameworks, it
is also called effectively-once. If you feel that this is too good to be true because
exactly-once is extremely hard to achieve in distributed systems, or the two terms
seem to be controversial, you are definitely not alone. We will talk about what
exactly-once really is later in its own section.

zxac’dﬂ—once sounds ideal. whg
would anyone ever want to use
at-most-once or ot-least-once?

Good question! No doubt thot
exan’clg—once sounds Srea’c. However, the
convenience comes with costs and there are
other considerations. It is very important for
developers to know what ’cheﬂ reallg need.
Now, let's discuss.
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Choosing the right semantics

You may ask whether it is true that exactly-once is the go-to semantic for everything.
The advantage is pretty obvious: the results are guaranteed to be accurate, and the cor-
rect answer is better than an incorrect answer.

With exactly-once, the streaming engine will do everything for you and there is noth-
ing to worry about. What are the other two options for? Why do we need to learn about
them? The fact is, all of them are useful because different streaming systems have differ-
ent requirements.

Here is a simple table for the tradeoffs to begin with. We will revisit the table later
after more discussion.

Delivery semantics | At-most-once At-least-once Exactly-once
Accuracy + No accuracy + No accuracy + (Looks like) accurate
guarantee because guarantee because results are guaranteed
of missing events of duplicated events
Latency (when . Tolerant to failures; |- Sensitive to failures; |- Sensitive to failures;
errors happen) no delay when errors | potential delay when | potential delay when
happen errors happen errors happen
Complexity « Very simple + Intermediate - Complex
(depends on the
implementation)

We will choose at-most-once For
the fraud detection job because we
need to have low process la’cencg, and
exactly-once for the system usage job
to0 have better aceuracy,

Let’s continue to learn how the delivery semantics are actually handled in streaming
systems. Then, you should be able to understand the tradeoffs better. Note that in the
real world, each framework could have its own architecture and handle delivery seman-
tics very differently. We will try to explain in a framework agnostic manner.
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At-most-once

Let’s start from the simplest semantic: at-most-once. Inside the jobs with this semantic,
events are not tracked. Engines will do their best to process each event successfully, but
if any error occurs along the way, the engines will forget the events and carry on process-
ing others. The diagram below shows how events are handled in the Streamwork engine
for at-most-once jobs.

The executors and event dispatchers blindly transter
events to the downstream processes. By this we
mean that it does not keep a ledger anywhere of
what goes where. They just pick up and move events
os fast as they can.

Instance executor Instance executor

Instance Instance

The executors and event dispatchers blind15 transfer
events to the downstream processes. &y this we
mean that it does not keep a ledger anywhere of
what goes where. T hegjus’c pick up and move events
as fast as ’ch65 con. It might be hard $or some people to
believe, but many real-life systems would

accept the ’cemporwrilﬂ inaccurate results to
keep them simple.

Since the engines don’t track events, the whole job can run very
efficiently without much overhead. And since the job will just
continue running without the need of recovering from the
issues, the latency and higher throughput won’t be affected by
the errors. In addition, the job will also be easier to maintain
because of the simplicity. On the other hand, the effect of losing
events when the system is having issues is that the results could
be temporarily inaccurate.




The fraud detection job

The fraud detection job

fransaction
Let’s look back at the fraud detection job source
with the at-most-once semantic. The fraud —
detection job is responsible for adding up -7 v Tl -
fraud scores on each transaction that enters overaoe windowed windowed
the card network, and it must generate the ticket proximity

results within 20 milliseconds. oanoluzer analuzer

score

assregod:or

The good

With the at-most-once guarantee, the system is simpler and processes transactions with
lower latency. When something goes wrong in the system, such as a transaction failing
to process or transport, or any instance is temporarily unavailable, the affected events
will simply be dropped and the score aggregator will just process with the available data,
so the critical latency requirement is met.

Low resource and maintenance costs is the other main motivation to choose the at-most-
once semantic. For example, if you have a huge amount of data to process in real time with
limited resources, the at-most-once semantic could be worth your consideration.

The bad

Now, it is time to talked about the catch: inaccuracy. It is definitely an important factor
when choosing the at-most-once semantic. At-most-once is suitable for the cases in
which temporary inaccuracy is acceptable. It is important to ask yourself this question
when you consider this option: what is the impact when the results are inaccurate
temporarily?

The hope

If you want the advantages of at-most-once as well as accurate results, don’t lose hope
yet. Although it might be too much to expect everything at the same time, there are still
a few things we can do to overcome this limitation (to some extent). We will talk about
these practical techniques at the end of this chapter, but for now, let’s move on and look
at the other two delivery semantics.
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At-least-once

No matter how convenient the at-most-once semantic is, the flaw is obvious: there is no
guarantee that each event will be reliably processed. This is just not acceptable in many
cases. Another flaw is that, since the events have been dropped without any trace, there
is not much we can do to improve the accuracy.

Next comes the next delivery semantic—at-least-once—which can be helpful for
overcoming the flaws discussed previously. With at-least-once, the streaming engines
will guarantee that events will be processed at least one time. A side effect of at-least-
once is that events may be processed more than one time. The diagram below shows how
events are handled in the Streamwork engine for at-least-once jobs.

Note that tracking events and making sure each of them is successfully processed
might sound easy, but it’s not a trivial task in distributed systems. We will look into it in
the next few pages.

The executors and event dispatchers transfer events
to the downstream processes, and the events are
tracked. I¥ an event is lost in the job, it will be resent.

Instance executor Instance executor

Instance Instance

1§ any of these events fail +o be transterred or
processed, the engine will reploy them from the
source. As the result, it is possible for these events to
be processed more than once.

Thot sounds pre’c’cg
s’craigh’c&‘—omard,

Whoa buddg... This is not
atrivial task to track events
in o job running on multiple
compu’cers

I
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At-least-once with acknowledging

A typical approach to support the at-least-once delivery semantic is that each compo-
nent within a streaming job acknowledges that it has successfully processed an event
or experienced a failure. Streaming frameworks usually supply a tracking mechanism
for you with a new process acknowledger. This acknowledger is responsible for tracking
the current and completed processes for each event. When all processes are completed,
and there is no current process left for an event, it will report a success or fail message
back to the data source. Let’s look at our system usage job running with the at-least-

once semantic below.

(- The acknowledger

Some of you may ask: why don’t we send the
acknowledgment message back to the source
directly? The main reason is related to the single
responsibility principle. The source is responsi-
ble for bridging the streaming job with the out-
side world, and we would like to keep it simple.

fransaction
source

v

W\
pckion SN w
T\’\? “};2 » ko tne otk
emtt - ond keeP Lk Ane
ok Gm\(og OUBY\O
og' \ks P
300
As events pass both of the

components in the job,
each one will need to
acKnowledse thot actions
were token (either

successfully or nob) on -\

each event.

sijs’cem

usage

_ ounod;;er

\/

usage

writer

Acknowledger

.

B

“ The acknowledger will listen Sor
either a successful or failed
message $rom the downstream
components. Once received it will
pass them back to the dato
source. 1§ successtul, the data
source will Know to discard the
event; it failed, the data source
will replo«a the event.

After the source component emits an event, it will keep it in a buffer first. After it receives
a success message from the acknowledger, it will remove the event from the buffer, since
the event has been successfully processed. If the source component receives a fail mes-
sage for the event, it will replay that event by emitting it into the job again.
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Track events

Let’s get closer and see how events are tracked with an example. The engine will wrap the
core event in some metadata as it leaves the data source. One of these pieces of meta-data
is an event id that is used for tracking the event through the job. Components would
report to the acknowledger after the process is completed.

Note that the downstream components are included in acknowledgment data, so the
acknowledger knows that it needs to wait for the tracking data from all the downstream
components before marking the process fully processed.

I. The data source se’cs a transaction and emits it
out with an assigned id 101. It will hold it read5 ‘o
resend until all components have Success¥ul\5
acknowledged the event has been processed.
The acKnowledgmen’c might look like:

{
Event id: 101,

Result: successfully processed,
Component: transaction source,

Downstream components: [
system usage analyzer
]
}

a. The anodgzer would send an
aclﬁnowledgmen’c on the id once

fransaction
source

v

processing has comple’ced on the

received event. \
{

Event id: 101,
Result: successfully processed,
Component: system usage analyzer,

sas’cem
usage
analg;er

\

Downstream components: [
usage writer

]

usage

writer

}

3. The usoge writer would send another

.

r-\cKnowledger

aclﬁnouuledgmen’c on the id once the processing

has completed.
{
Event id: 101,

Result: successfully processed,

Component: usage writer

}

4. The acKnowIedser
receives all the needed
acknowledgments (from
all the “downstream
components” and
notifies the transoction
source thot the event
with id 101 has been
¥u1\5 processed.
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Handle event processing failures

In another case, if the event fails to process in any component, the acknowledger will
notify the source component to resend.

I. The dato source gets a transaction and emits it out with an assigned
id 101. It will hold it readg to resend until all components have
sucoess’?ul\g aclﬁnowledsed the event has been processed. When a
Lailure is received, the event will be resent with a. new assigned event id.

The acknowledgment might look like:
{
Event id: 101,
Result: successfully processed,
Component: transaction source,
Downstream components: [
system usage analyzer
]
}

fronsaction o
Acknowledger
source ) _——
3. The analyzer would send an : %
acknowledgment on the id once v T
processing has completed on the | system . he acknowled
received event. \ usase . 4, T -e acknowle: ser
( . 1 _anaiuzer receives all the
Event id: 101, = acknowledgments and
Result: successfully processed, ! - o )
Component: system usage analyzer, v no’n%es ‘the {VQDS&C‘“CT\
Downstream components: [ source thot the event
i usooe S
| uonas e o with id 101 couldn't be
writer
} fully processed. A retry

is needed.

3. The usoge writer has an issue o process the event
and it would send another acKnomledsmen’c on the id once
the processing has failed. The acknowledgment might

looK like:

{
Event id: 101,
Result: process failed,
Component: usage writer

}
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Track early out events

The last case we need to take a look at is when not all events go through all the compo-
nents. Some events may finish their journey earlier. This is why the downstream compo-
nent information in the acknowledgment message is important. For example, if the
transaction is not valid and won’t need to be written to storage, the system usage ana-
lyzer will be the last stop of the event, and the process will be completed there.

I. The data source Se’cs a transaction and emits it out with an assigned
id 101. It will hold it read5 %o resend until all components have
success¥u1\5 acKnowledged the event has been processed. The

acknowledgment might look like:
{
Event id: 101,
Result: successfully processed,
Component: transaction source,
Downstream components: [
system usage analyzer
]

} —
transoction |
source _
n v
1
A/
system .
usage 4. The acknowledger
‘% receives all the
1 acKnowledSmen’cs and
v notifies the transaction
usage source that the event
writer with id 101 has been
¥ul\3 processed.

a. The ounodljzer would send an acHnowledgmen’c on the id

once processing has completed on the received event. Note 3, The us < nok 0 ¥ne

that it this is the last component for the event, there is no c,ompoﬂeﬂ’( V onent st

downstream component in the acknowledgment dato. The dow"‘sk(eamw\«nouo\edge(

acKnowIedSmen’c might look like: nence, e

{ wont woit For (34
Event id: 101, w\edgme“k Scom
Result: successfully processed, O&/\“no

Component: system usage analyzer

}
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Acknowledging code in components

If you are wondering how the engine will know how a component will pass or fail an
event, that is good! Below we have snippets of code that will be implemented in the
SystemUsageAnalyzer and the UsageWriter components.

class SystemUsageAnalyzer extends Operator {
public void apply(Event event, EventCollector collector) {

if (isvalidEvent (event.data)) { .
if (analyze(event.data) == SUCCESSFUL) { AN aclﬁnowledgmen’c will be sent out

collector.emit (event) ; g——17Ho ————— hen an event is emitted to
acknowledge the event as successtul.

collector.ack (event.id) ;
} else {

//signal this event as failure Anodg?,'\ng Lailed. ncKnowledSe this

collector.fail (event.id) ;
} event as unsuccessful.

} else {
// signal this event as successful
collector.ack (event.id) ;

} The event should be skipped.
) AcKnowledge this event as
} successtul, so the source component

won’t repla5 it

class UsageWriter extends Operator {
public void apply (Event event, EventCollector collector) {

if (database.write(event) == SUCCESSFUL) { .
//signal this event as successful No needko em‘&&he e\/er\t out.

collector.ack (event.id) ;<—/momuwd\3 ow,KnowledSe this event as
Joelse | successtul.

// signal this event as unsuccessful

collector.fail(event-idl/4— The dotabase is hawing issues writing.
b r-\cKnowledse this event as
) unsuccesstul.
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New concept: Checkpointing

Acknowledging works fine for the at-least-once semantic, but it has some drawbacks.
+ The acknowledgment logic (aka code change) is needed.

+ The order of events processing could be different from the input, which could
cause issues. For example, if we have three events [A, B, C] to process, and the
processing job has a failure when processing event A, another copy of event A
will be replayed later by the source, and eventually four events, [A (failed), B, C,
A], are emitted into the job, and event A is successfully processed after B and C.

Luckily, there is another option to support the at-least-once semantic (with tradeoffs, like
everything else in the distributed systems): checkpointing It is an important technique in
streaming systems to achieve fault tolerance (i.e., the system continues operating properly
after the failures). Because there are many pieces involved, it is a little messy to explain
checkpointing in detail in streaming systems. So let’s try a different way. Although the con-
cept of checkpointing sounds technical, it is, in fact, very likely that you have experienced it
in real life if you have ever played video games. If you haven’t played any, that’s OK. You can
also think of any text editor software (or maybe you want to try a video game now).

Now, let’s play an adventure game fighting all kinds of zombies and saving the world.
It is not very common that you will complete the game nonstop from the beginning to
the end, unless you are like a superhero and never fail. Most of us will fail occasionally
(or more than occasionally). Hopefully, you have saved your progress so you can reload
the game and resume where you were instead of starting over from the very beginning.
In some games, the progress might be saved automatically at critical points. Now, imag-
ine that you live in the universe of the game. Your time should be continuous without
interruption, even though in real life you have been rolled back a few (or many) times to
earlier states. The operation of saving a game is very much like checkpointing.

Time in >
real life
gome /> qome
a. Log,
l Saye, : 3%d A savey 4
1 ol € Whep, :
mMeth:
The Saved do, * Joe 'H"Ml') 1
used QA can pe S Wrop
. to restore game 9.
P OSres& ata 'Qfer Nk L
e.
Time in the
.................................................. —_—

game universe
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New concept: State

If you play video games, you know how important saved data is. I can’t imagine how I
can finish any game (or any work) without that functionality. A more formal definition
of checkpoint is a piece of data, typically persisted in storage, that can be used by an
instance to restore to a previous state. We will now cover another related concept: state.
Let’s go back to the zombie universe and see what data would be needed to restore and
continue the adventure. The data could be very different from game to game, but we
should be able to imagine that the following data will be needed in the saved games:

« The current score and levels of skills
+ The equipment you have
« The tasks that have been finished

One key property that makes the data important is that it changes along with the game-
play. The data that doesn’t change when you are working hard to save the world, such as
the map and the appearance of the zombies, doesn’t need to be included in the saved
games.

Now, let’s go back to the definition of state in streaming systems: the internal data
inside each instance that changes when events are processed. For example, in the system
usage job, each instance of the system usage analyzer keeps track of the count of trans-
actions it has processed. This count changes when a new transaction is processed, and it
is one piece of information in the state. When the instance is restarted, the count needs
to be recovered.

While the concepts of checkpointing and state are not complicated, we need to under-
stand that checkpointing is not a trivial task in distributed systems like in streaming
systems. There could be hundreds or thousands of instances working together to process
events at the same time. It is the engine’s responsibility to manage the checkpointing of
all the instances and make sure they are all synchronized. We will leave it here and come
back to this topic later in chapter 10.
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Checkpointing in the system usage job
for the at-least-once semantic

Before introducing checkpointing for at-least-once, we need to introduce a useful com-
ponent between the API gateway and the system usage job: an event log. Note that the
term is used for the purposes of this book and is not widely used, but it shouldn’t be hard
to get. An event log is a queue of events in which each event is tracked with an offset (or
a timestamp). The reader (or consumer) can jump to a specific offset and start loading
data from there. In real life, events might be organized in multiple partitions, and offsets
are managed independently in each partition, but let’s keep things simple here and
assume there is only one offset and one transaction source instance.

With an event log in front of the transaction source component, every minute (or
other interval) the source instance creates a checkpoint with the current state—the cur-
rent offset it is working on. When the job is restarted, the engine will identify the right
offset for the instance to jump to (a rollback) and start processing events from that point.
Note that the events processed by the instance from the checkpointing time to the restart
time will be processed again, but it is OK under the at-least-once semantic.

APl
otew
8 a'}j :he event | 03 Q.“ow
: *PI2Y transaction, - oo to
‘Pr()m a'chons Start
a PQS{’ {'iIne. 'nS
checKpoin’cs
s’comge :
A
fronsaction

<“— - 4—/—\
source

a. when the job restarts, a

l. 8very mi . ! voll back will be triggered.
each igs';::(::eogor other interval) y The engjine idenh??i the
source compone :he fransaction St correct ofSsets for the
checKPoin’c Eﬁ{h :h croetes anew neege +ransaction source instances
working on and © o?:?s.ef His ‘m kojump Yo. The instances will
s{roragg The ch Save§ in the I start loading events Srom

like: - chechspoint might look ! the o%Ssets and keep
{ usage processing.

} Event offset: 100 writer
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Checkpointing and state manipulation
functions

Checkpointing is very powerful. Many things are happening when a job is running with
checkpointing enabled. A few major points include:

+ Periodically, each source instance needs to create the checkpoint with their
current states.

+  The checkpoints need be saved into a (hopefully fault-tolerant) storage system.
+ The streaming job needs to restart itself automatically when a failure is detected.

+ The job needs to identify the latest checkpoints, and each restarted source
instance needs to load its checkpoint file and recover its previous state.

+  We don’t have unlimited storage, so older checkpoints need to be cleaned up to
save resources.

It sounds like
chechoin’cins is complica’ced
and a lot of work to
implement?...

'y

v

After looking at all the points above, don’t panic! It is true that the whole checkpointing
mechanism is a bit complicated, and there are many things happening to make it work.
Luckily, most of these are handled by the streaming frameworks, and the stream job
owners need to worry about only one thing: the state. More specifically, the two state
manipulation functions:

+  Get the current state of the instance. The function will be invoked periodically.

+ Initialize the instance with a state object loaded from a checkpoint. The function
will be invoked during the startup of the streaming job.

Aslong as the two functions above are provided, the streaming framework will do all the
dirty work behind the scenes, such as packing the states in a checkpoint, saving it on
disk, and using a checkpoint to initialize instances.
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State handling code in the transaction source
component

The following is a code example of the TransactionSource component with the
Streamwork framework:

+ The base class is changed from Source to StatefulSource.

«  With this new base class, a new getState() function is introduced to extract
the state of the instance and return to the engine.

+ Another change is that the setupInstance() function takes an additional
State object to set up the instance after it is constructed, which didn’t exist for

the stateless operators.
Source and

StatefulSource
public abstract class Source extends Component {
public abstract void setupInstance (int instance); cﬂass&a;
public abstract void getEvents (EventCollector eventCollector);

}

public abstract class StatefulSource extends Component {
public abstract void setupInstance (int instance, State state);
public abstract void getEvents (EventCollector eventCollector) ;
public abstract State getState();
} A new state object is

used to set up the

This new function is used to extroct .
instance.

the state of the instance.

class TransactionSource extends StatefulSource ({
MessageQueue queue;
int offset = 0;

public void setupInstance (int instance, State state) {
sourceState mstate = (SourceState)state; The d&{& i\'\ ’che s’ca’ce Objee{ i
if (mstate != null) { .
offset = mstate.offset; used to set up the instance.
log.seek (offset) ;
}

public void getEvents (Event event, EventCollector eventCollector) {
Transaction transaction = log.pull();
eventCollector.add (new TransactionEvent (transaction));
offset++;
) \ S The ofSset value changes when a new
event is pulled $rom the event log and

emitted to the downstreom componen’cs.

public State getState() {
SourceState state = new SourceState() ;
State.offset = offset;

return new state; The state object of the instance
) containg the current dota ofSset in
the event log.
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Exactly-once or effectively-once?

For the system usage job, neither at-most-one nor the at-least-once semantics are ideal
because accurate results are not guaranteed, but we need them to make the right deci-
sion. To achieve this goal, we can choose the last semantic: exactly-once, which guaran-
tees that each event is successfully processed once and only once. Hence, the results are
accurate.

First, let’s discuss what we mean by exactly-once. It is critical to understand the fact
that every event is not really processed or successfully processed exactly one time like the
name suggests. The real meaning is that if you look at the job as a black box—in other
words, if you look only at the input and the output and ignore how the job really works
internally, it looks like each event is processed successfully once and only once. However,
if we dive into the system internally, it is possible for each event to be processed more
than one time. Now, if you look at the topic of this chapter it is delivery semantics instead
of process semantics. Subtle, right?

When the semantic was briefly introduced earlier in this chapter, we mentioned that
it is called effectively-once in some frameworks. Technically, effectively-once could be a
more accurate term, but exactly-once is widely used; thus, we decided to use the term
exactly-once as the standard in this book, so you won’t be confused in the future.

-8-

1t seems that exac’clg versus
e?—?-ectivelg are close in meaning,
what exoctly are the di%®erences?

\SAS

If you still feel that the looks like (or effectively) part is tricky, it is totally understandable.
To help you understand better what it really is, let’s steer away and talk a little about an
interesting concept next: idempotency. Hopetully, it will be helpful in giving you a better
idea about what we mean by effectively.

A real exactly-once is extremely difficult in

distributed systems—for real.
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Bonus concept: Idempotent operation

Idempotent operation seems like a loaded term, right? It is a computational and mathe-
matical term that means no matter how many times a function is given a quantity, the
output will always be the same. Another way to think about it is: making multiple iden-
tical calls to the operation has the same effect as making a single call. Clear as mud? No
worries. Let’s get into one example in the context of a credit card class.

Let’s look at two methods of the class: setCardBalance() and charge().

 The setCardBalance() function sets the card balance to a new value
specified as the parameter.

+ The charge() function adds the new amount to the balance.

er
The results would be the same no mokt

imnes
- es (more than O ime )
how many time nce () Sunckion is

class CreditCard { ala
double balance; “’\OU‘S‘“) the setCardB ameter.
colled with the same par
public void setCardBalance (double balance) {
this.balance = balance;

} & cnond?
o (exoXe) wo Quncion

ont
Tne b(l\ charge of eke(-
NS 0
public void charge(float amount) { e\le(gk\m k\'\k\"e 50:\’\6?
balance += amount; A C,(ﬂ\e wy
\S

}
}

One interesting property of the setCardBalance() function is that after it is called
once, the state of the credit card object (the card balance) is set to the new value. If the
function is then invoked the second time, the balance will still set to the new value again,
but the state (the balance) is the same as before. By looking at the card balance, it looks
like the function is only called one time because you can't tell if it is called once or more
than once. In other words, the function might be called once or more than once, but it is
effectively once, since the effect is the same. Because of this behavior, the setCard-
Balance() function is an idempotent operation.

As a comparison, the charge () function is not an idempotent operation. When it is
invoked once, the balance will increase by the amount. If the call is repeated for the sec-
ond time by mistake, the balance will increase again, and the card object will be in a
wrong state. Therefore, since the function is not idempotent, it really needs to be called
exactly once for the state to be correct.

The exactly-once semantic in streaming systems works like the setCardBalance()
function above. From the states of all the instances in the job, it looks like each event is
processed exactly one time, but internally, the event might be processed more than once
by each component.
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Exactly-once, finally

After learning the real meaning of the semantic and the concept of the idempotent oper-
ation, plus knowing the power of returning the accurate results, are you more interested
in how exactly-once works now? Exactly-once may sound fancy, but it is really not that
complicated. Typically, the exactly-once semantic is supported with checkpointing,
which is very similar to the at-least-once support. The difference is that checkpoints are
created for both sources and operators, so they can all travel back in time together during
a rollback. Note that checkpoints are needed only for the operators with internal states.
Checkpoints are not needed for the operators without internal states because there is
nothing to recover during a rollback.
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4. When the job is restarted,
the engine identifies the
1 correct checkpoint to lood.
checkpoints ; all instonces (that have
storage checkpoint dato) in the job
transaction
P ¢ will restore their states $rom
-« source he corresponding checkpoint
' / $rom the storage and start
.. A processing events ogain.
R system
/-; usage
4. Whe Lonalzec
) N an anajazer ins_‘,an% .
receives a che .
creates ckpoint event, it \ ,/_\ rave
it :: New checkpoing, saves usage 3. The usoge writer doesn : b‘:
orage, and ) thok needs to
th . passes writer internal doto e
doi ch:rckpomf event to the v ‘Swed o checkpoints O i ignores
ns
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Does it sound simple so far? Don’t celebrate yet. The state of a source instance is just an
offset. But the state of an operator instance could be much more complicated, since it is
specific to the logic. For operators, the state could be a simple number, a list, a map, or a
complicated data structure. Although streaming engines are responsible for managing
the checkpoints data normally, it is important to understand the cost behind the scenes.
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State handling code in the system usage
analyzer component

With the Streamwork framework, to make the SystemUsageAnalyzer component
handle the creation and usage of instance state, the changes are similar to the
TransactionSource we have seen earlier.

+ The base class is changed from Operator to StatefulOperator.
+ The setupInstance() function takes an extra state parameter.

* AnewgetState() function is added.

public abstract class Operator extends Component {
public abstract void setupInstance (int instance); .
public abstract void getEvents (EventCollector eventCollector); A new stote Ohje(‘k [

public abstract GroupingStrategy getGroupingStrategy(); used to set “P the

} .
instance.

public abstract class StatefulOperator extends Component {
public abstract void setuplInstance(int instance, State state);
public abstract void apply(Event event, EventCollector eventCollector);

public abstract GroupingStrategy getGroupingStrategy();
public abstract State getState();

This new function is used to extroct
}
A\—/ the state of the instance.

class SystemUsageAnalyzer extends StatefulOperator {
int transactionCount;

public void setupInstance (int instance, State state) {

AnalyzerState mstate = (AnalyzerState)state; A )
transactionCount = when an instance is constructed,

state.count;
AAAAAA \— o state object is used o initialize
the instance.

public void apply(Event event, EventCollector eventCollector) {
transactionCount++;

e The count variable chomges when
events are processed.

eventCollector.add (transactionCount) ;

}

public State getState() {

AnalyzerState state = new AnalyzerState(); . R
oted to
State.count = transactionCount; A new stote oh)ec’c 1S cres ed

return state; \ store instance dato periodicod\g.

}

Note that the API supported by the Streamwork framework is a low-level API to show
you how things work internally. Nowadays, most frameworks support higher level APIs,
such as functional and declarative APIs. With these new types of APIs, reusable compo-
nents are designed, so users don’t need to worry about the details. You should be able to
tell the difference when you start using one in the future.
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Comparing the delivery semantics again

All the delivery semantics have their own use cases. Now that we have seen all the
delivery semantics, let’s compare the differences again (in an overly simplified man-
ner) in one place. We can see from the table that follows it is clear that different
delivery semantics have different pros and cons. Sometimes, none of them are per-
fect for your use case. In those cases, then, you will have to understand the tradeoffs
and make the decision accordingly. You may also need to change from one to another
when requirements change.

Delivery semantics | At-most-once At-least-once Exactly-once
Accuracy + No accuracy + No accuracy + (Looks like) accurate
guarantee because guarantee because results are guaranteed
of missing events of duplicated events
Latency (when - Tolerant to failures; |+ Sensitive to failures; |- Sensitive to failures;
errors happen) no delay when errors | potential delay when | potential delay when
happen errors happen errors happen
Complexity/ « Very simple and light |+ Intermediate - Complex and
resource usage weight (depends on the heavyweight
implementation)
Maintenance + Low + Intermediate + High
burden
Throughput - High « Intermediate - Low
Code + No code change « Some code changeis |« More code change
is needed needed is needed
Dependency + No external + No external  Need external storage
dependencies dependencies (with to save checkpoints
acknowledging)

Regarding decisions and tradeoffs, a reasonable concern for people considering choosing
at-most-once and at-least-once for benefits like latency and efficiency is that accuracy is
not guaranteed. There is a popular technique to avoid this problem that could be helpful
to make people feel better: lambda architecture. With lambda architecture, a companion
batch process is running on the same data to generate accurate results with higher end-
to-end latency. Since we have a lot to digest in this chapter, we will talk about it later in
more detail in chapter 10.
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Summary

In this chapter, we discussed an important new concept in streaming systems: delivery
semantics or delivery guarantees. Three types of semantics you can choose for your
streaming jobs are:

+ At-most-once—Each event is guaranteed to be processed no more than once,
which means it could be skipped when any failure happens in the streaming jobs.

* At-least-once—Events are guaranteed to be processed by the stream jobs, but it is
possible that some events will be processed more than once in the face of failures.

*  Exactly-once—With this semantic, from the results, it looks like each event is
processed only once. It is also known as effectively-once.

We discussed the pros and cons of each of these semantics in this chapter and briefly
talked about an important technique to support at-least-once and exactly-once in
streaming systems: checkpointing. The goal is for you be able to choose the most suitable
delivery semantics for your own use cases.

Exercises

1. Which delivery semantic would you choose if you were building the following jobs,
and why?

+ Find out the most popular hashtags on Twitter. transaction

source
+ Import records from a data stream to a database.

2. In this chapter, we have looked at the system usage analyzer '

. ; O v
component in the system usage job and modified it to be an System
idempotent operation. What is the usage writer component? usoge
Is it an idempotent operation or not? omad; zer

1
\
usage

writer




Up next...

Up next...

From chapter 2 through chapter 5, quite a few concepts have been introduced. They
are the most common and basic concepts you need when you start building streaming
systems. In the next chapter, we are going to take a small break and review what we
have learned so far. Then, we will jump into more advanced topics like windowing and

join operations.
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Streaming systems review 6
and a glimpse ahead

In this chapter

a review of the concepts we've learned

« anintroduction of more advanced concepts to be

covered in the chapters in part 2

‘ ‘ Technology makes it possible for people to gain control ’ ,
over everything, except over technology.

—JOHN TUDOR

After learning the basic concepts in streaming systems in the previous
chapters, it is time to take a small break and review them in this chapter. We
will also take a peek at the content in the later chapters and get ready for the
new adventure.
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Streaming system pieces

A jobis an application that loads incoming data and processes it. All streaming jobs have
four different pieces: event, stream, source, and operator. Note that these concepts may or
may not be named in a similar fashion in different frameworks.




Parallelization and event grouping

Parallelization and event grouping

Processing events one by one is usually not acceptable in the real world. Parallelization is
critical for solving problems on a large scale (i.e., it can handle more load). When using
parallelization, it is necessary to understand how to route events with a grouping

strategy.
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DAGs and streaming jobs

A DAG, or directed acyclic graph, is used to represent the logical structure of a streaming
job and how data flows through it. In more complicated streaming jobs like the fraud
detection system, one component can have multiple upstream components (fan-in) and/
or downstream components (fan-out).
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Delivery semantics (guarantees)

After understanding the basic pieces of streaming jobs, we stepped back and looked at
the problems to solve again. What are the requirements? What is important for the prob-
lem? Throughput, latency, and/or accuracy?

After the requirements are clear, delivery semantics need to be configured accordingly.
There are three delivery semantics to choose from:

*  At-most-once—Streaming jobs will process events with no guarantees of being
successfully processed at all.

*  At-least-once—Streaming jobs guarantee that every event will be successfully
processed at least once, but there is no guarantee how many times each event will
be processed.

*+  Exactly-once—Streaming jobs guarantee that, it looks like each event is processed
once and only once. It is also known as effectively-once.

The exactly-once guarantees accurate results, but there are some costs that can’t be
ignored, such as latency and complexity. It is important to understand what require-
ments are essential for each streaming job in order to choose the right option.
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Delivery semantics used in the credit card
fraud detection system

In chapter 5, a new system usage job was added into the credit card fraud detection sys-
tem. It gives a real-time view of the usage of the whole system. The fraud detect job and
the new job have different requirements:

+ Latency is more important for the original fraud detection job.
+ Accuracy is more important for the new system usage job.

As aresult, different delivery semantics are chosen for them accordingly.
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Which way to go from here

The chapters up until now have covered the core concepts of streaming systems. These
concepts should get you started building streaming jobs for many purposes in a frame-
work of your choosing.

But they are definitely not all in streaming systems! As you move forward in your
career and start to solve bigger, more complex problems, you are likely going to run into
scenarios that will require more advanced knowledge of streaming systems. In the fol-
lowing chapters in part 2 of this book, a few more advanced topics will be discussed:

+  Windowed computations

+ Joining data in real time

+  Backpressure

+ Stateless and stateful computations

For the basic concepts we have studied in the previous chapters, order is important so far
as each chapter built upon the previous. However, in the second part of the book each
chapter is more standalone, so you can read the chapters either sequentially or in an
order you prefer. To make it easier for you to choose which ones to read first, here is a
glimpse ahead of what will be covered in each of the chapters.
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Windowed computations

So far, we have been processing events one by one in our examples. However, in the fraud
detection job, the analyzers rely on not only the current event but also on the informa-
tion of when, where, and how a card was used recently to identify unauthorized card
usages. For example, the windowed proximity analyzer identifies fraud by detecting
credit cards charged in different locations in a short period of time. How can we build
streaming systems to solve these types of problems?
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In streaming systems, to slice events into event sets to process, windowed computations
will be needed. In chapter 7, we will study different windowing strategies in streaming
systems with the windowed proximity analyzer in the fraud detection job.

In addition, windowed computation often has its limitations, and these limitations
are important for this analyzer and many other real-world problems. In this chapter, we are
also going to discuss a widely used technique:
using key-value stores (dictionary-like
database systems) to implement win-
dowed operators.

How do we define what o
slice ig?

In streaming systems, windowed
operators process event sets instead of

individual events.




Joining data in real time

Joining data in real time

In chapter 8, we will build a new system to monitor the CO, emission of all the vehicles
in Silicon Valley in real time. Vehicles in the city report their models and locations
every minute. These events will be joined with other data to generate a real-time CO,
emission map.
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obout it in chopter 8.
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For people who have worked with databases before, join shouldn’t be a strange concept.
It is used when you need to reference data across multiple tables. In streaming systems,
there is a similar join operator with its own characteristics, and it will be discussed in
chapter 8. Note that join is the type of stream fan-in we have mentioned (but skipped) in
chapter 4.
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Backpressure

After you have a streaming job running to process data, you will (hopefully not too
soon) face a problem: computers are not reliable! Well, to be fair, computers are reliable
mostly, but typically streaming systems might keep running for years, and many issues
can come up.

The team got a request from the banks to review the fraud detection system and pro-
vide a report about the reliability of the system. More specifically, will the job stop work-
ing when there is any computer or network issue, and will the results be missing or
inaccurate? It is a reasonable request, since a lot of money is involved. In fact, even with-
out the request from the banks, it is an important question anyway, right?
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Backpressure is a common self-protection mechanism supported by most streaming
frameworks. With backpressure, the processes will slow down temporarily and try to
give the system a chance to recover from problems, such as temporary network issues or
sudden traffic spikes overloading computers. In some cases, dropping events could be
more desirable than slowing down. Backpressure is a useful tool for developers to build
reliable systems. In chapter 9, we will see how streaming engines detect and handle issues
with backpressure.
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Stateless and stateful computations

Maintenance is important for all computer systems. To reduce cost and improve reliabil-
ity, Sid has decided to migrate the streaming jobs to new and more efficient hardwares.
This will be a major maintenance task, and it is critical to proceed carefully to make sure
everything works correctly.

Is the process riskg? How do we
make sure the results are correct
during and after the migration?
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A debt we have left behind in chapter 5, delivery semantics, is stateful component. We
have discussed briefly what a stateful component is and how it is used in at-least-once
and exactly-once delivery semantics. However, sometimes less is more. It is important to
understand the tradeoffs to make better technical decisions when building and main-
taining streaming systems.

In chapter 10, we will look into how stateful components work internally in greater
detail. We will also talk about alternative options to avoid some of the costs and
limitations.

o
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Part 2
Stepping up

The second part of this book takes you deep into theory with some framework-
agnostic implementations of how streaming systems handle more complex
topics. Chapter 7 shows you how to slice never-ending streams of data into
meaningful chunks, and chapter 8 lays out the process of joining data in
real time. In chapter 9, you find out how streaming systems can help you
recover from processing failures, and in chapter 10, you dive into the com-
plexities of managing state in real-time streaming jobs. Finally, chapter 11
quickly recaps the book’s content and gives you some guidance on what to
do after reading this book.






Windowed computations 7

In this chapter

- standard windowing strategies
+ time stamps in events

- windowing watermark and late events

‘ ‘ The attention span of a computer is only as long as its ’ ’

power cord.

—UNKNOWN

In the previous chapters, we built a streaming job to detect fraudulent credit
card transactions. There could be many analyzers that use different models,
but the basic idea is to compare the transaction with the previous activities on
the same card. Windowing is designed for this type of work, and we are going
to learn the windowing support in streaming systems in this chapter.
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Slicing up real-time data

As the popularity of the team’s new product has grown so has the attention of new types
of hackers. A group of hackers has started a new scheme involving gas stations.

Here’s how it works: They capture an innocent victim’s card information and dupli-
cate it from multiple new physical credit cards. From there, the attackers will send the
newly created fraudulent cards out to others in the group and orchestrate spending
money on the same credit card from multiple locations across the world at the same time
to purchase gas. They hope that by charging the card all at once, the card holder will not
notice the charges until it’s too late. The result is free gas. Why do they go to a global
scale to try and get free tanks of gas? We can consider this a mystery.

Al
the ’cransacﬁons are sent 4o

the Praug detecti I¥ the same card is physically swiped ot

running here, N SYstem multiple physical locations across the
world, it's I‘\Kel3 that those tronsactions
ore $raudulent.

How do we prevent this scam?

For the purposes of this book, we are going to use round numbers for easy math calcu-
lations. We will also assume that the fastest anyone can travel is 500 miles per hour on a
plane. Luckily, the team has already thought of this type of scam.
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Breaking down the problem in detail

We have two problems that we are trying to solve here. First, we are looking for large
jumps of distance within a single credit card. Second, we are looking for large jumps in
card usage across multiple credit cards. In the first scenario, we will be looking to mark
specific card transactions as fraudulent; in the second one, we will be looking to flag
merchants (gas stations) as under attack by these menacing gas thieves.

Because of the max amount of trovel per hour

(soo mMph), it's safe to assume that someone cannot
phasica]\g swipe their card in San Ramon, California,
then two hours loter swipe their card in Saint Louis,
Missouri, because the distance traveled in a hours ;s
greater than phgsica]\l.j possible bﬂ a human.
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Here’s our formula:

final double maxMilesPerHour = 500;
final double distanceInMiles = 2000;
final double hourBetweenSwipes = 2;

if (distanceInMiles > hourBetweenSwipe * maxMilesPerHour) ({
// mark this transaction as potentially fraudulent

How does the anodazer correlate o
current fransaction with older transactions
in real time?
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Breaking down the problem in detail (continued)

This hacker group in particular likes to create massive worldwide attacks—all filling up
cars with gas. It’s important to look at the behaviors of the entire credit card system as
well as one credit card in the system. When these large-scale gas station attacks happen,
we need some way to block stores from processing any credit cards that are being attacked
to further enhance the security of the system. Study the diagram below that uses a few
US cities as examples for locations from which a card could be charged.

Looking at this graph, you can see
that two cards are chourged ot
different locations all over the us.
How we decide to split up this graph on
the x ime) axis will be the defined
window for the operation.
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We have two ways to prevent this type of scam:
+ We can block individual credit cards from being charged.
+ We can block gas stations from processing any credit cards.

But what tools do we have in our streaming systems to help us detect fraudulent activity?
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Two different contexts

To address our two different ways of preventing fraud, let’s look at the graph from a pre-
vious page to further show how we can split up the context. Remember that the win-
dowed proximity analyzer looks for fraud within the context of single credit cards, and
the new analyzer works within the context of stores.
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Windowing in the fraud detection job

Most of the analyzer components in the fraud detection job use some type of window (we
will discuss this next) to compare the current transaction against the previous ones. In
this chapter, we are going to focus on the windowed proximity analyzer, which detects
individual credit cards being swapped in different locations. For the gas stations, we are
going to leave it to our smart readers.
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What exactly are windows?

Since the credit card transactions are constantly running through the system, it can be
challenging to create cut-off points or segments of data to process. After all, how do you
choose an end to something that is potentially infinite, such as a data stream?

Using windows in streaming systems allows developers to slice up the endless stream
of events into chunks for processing. Note that the slicing can be either time-based (tem-
poral) or event count-based in most cases. We are going to use time-based windows in
context later, since they fit our scenarios better.

Tronsoctions $from all over the world
are sent through the $roud detection
Job. Windows are used to group the
infinite flow of transactions to the
streaming jobs into finite windows of
doto.

NP

fransaction More
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source
dows /7
ere

h\
LAY
(BN
1
1

windows allow us to break up
the continuous stream of

events into smaller chunks. C‘I

The continuous
streom of events
between components
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Looking closer into the window

What we’ve done with streaming systems so far in this book has been on a per-event, or
individual, basis. This method works well for many cases, but it could have some limita-
tions as you start to get into more complex problems. In many other cases, it can be
useful to group events via some type of interval to process. Check out the diagrams
below to learn a little more about the very basic concept of windowing.

gefore, we have been processing each element ’\ndividal\ﬂ.

fime

In this chapter, we will process events in groups divided

b5 windows.

window | window a window 3

D

time

Mo’cg that windowy Size can be
defineq b3 atime period or
Number of elements. It ig

defineq b5 the clevelopers.
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New concept: Windowing strategy

After understanding what windowing is, let’s look at how the events are grouped together
using a windowing strategy. We are going to walk you through three different types of
windowing strategies and discuss their differences in the windowed proximity analyzer.
The three types of windowing strategies are:

* Fixed window
+ Sliding window
+ Session window

Often, there is no hard requirement for choosing a windowing strategy (how the events
are grouped). You will need to talk with other technologists and product owners on your
team to make the best decision for the specific problem you are trying to solve.

How we will split up the endless stream of events to look
for large jumps in location? Will choosing ditferent window
strotegies affect accwracg?

" Does it reod|3 make a difference in
1~ E how we split up the events?
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Fixed windows

The first and most basic window is fixed window. Fixed windows are also referred to as
tumbling windows. Events received from the beginning to the end of each window are
grouped as a batch to be processed together. For example, when a fixed one-minute time
window (also known as a minutely window) is configured, all the events within the same
one-minute window will be grouped together to be processed. Fixed windows are simple
and straightforward, and they are very useful in many scenarios. The question is: do they
work for the windowed proximity analyzer?

fransaction
source

goch of these sections
represen’cs o I-minute
fime window. .

windowed

proximi’cg
aluzer
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Fixed windows in the windowed proximity

analyzer

Here is an example of using a fixed window to look for repeated charges from the same
card. To keep things simple, we are just using minutely windows to see what each group
of events would look like. The goal is to find out repeated transactions from each card
within each one-minute window. We will worry about the other things, such as the

500-miles-per-hour max distance logic later.

It’s important to note that using a fixed time window only means the time interval is
fixed. It’s possible to get more or fewer events in each window based on the number of

events flowing through the job.

X
1ded X0 \ook & The ¢
The team dec‘s of ime Yo \ook frans;’;’?sfamp of eae
Joed Windo Xne saMe s tion. opyy, , —on
st xions From €conq y, Y minug,
for kronse Aues are ine| © ang
eredi cor 'K'/ Clded here,
- - —
: 00:12 | card no: ...1234
Ist I min window:
00:00-00:59 00:49 | card no: 6789
' 00:55 | card no: ..1212
- -
: 01:10 | card no: ...6789
and | min window: | 01:26 | card no: ..2345
01:00-01:59
; 01:37 | card no: ..1212
v 01:42 | card no: 1212
e -
2rd | min uuir:\douo: 02:22 card no: ...7865
080070859 o238 | card no: 4433

gven ’chough each window
time interval is the same,
the number of events per
window vavries.
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Detecting fraud with a fixed time window

Let’s look at how the card proximity analyzer would behave using fixed time windows.
The amount of transactions per window has been limited to only a few, so we can learn

the concepts of windowing most easily.

If you look closely at this diagram, it will hopefully be more clear how fixed time
windows would affect potential fraud scores. By running fixed time windows, you are
just cutting off other transactions that run through the system, even if they are only a
second outside of the window. Do you think this is the windowing type we should use
to most accurately detect fraud?

The answer is that a fixed time window is not ideal for our problem. If two transac-
tions on the same card are a just few seconds apart, but they fall into two different fixed
windows, such as the two transactions from the card ....6789, we won’t be able to run the
card proximity function on them.

In this window), there is
no repeated card, so no
froud here.

Cord ...1313 has a duplicated
charge in the same window.
Our card proximity function
would be run to assess the
poss\bili’cg of $raud.

In this window), there is
no repeated card, $0 No
fraud here.

...1234 j

00:12 | card no:
00:49 | card no: ...6789
00:55 | card no: 1212
N 01:10 | card no: ..6789
01:26 | card no: ..2345
Y 01:37 | card no: ..1212
01:42 | card no: ..1212
02:22 | cardno: ..7865
02:38 | card no: ..4433

Looks like the $roud score wont
be accurate it we just cut off events
from being included. in our fixed
windows.

The two
transactions on the
card ...789 are al
seconds apart; but
’che3 belons +o two
difSerent fixed
windows.

And these two
transactions on
the card ....1a13
have the same
issue.
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Fixed windows: Time vs. count

Before moving forward to the next windowing strategy, let’s take a look at two types of
fixed windows first:

+ Time windows are defined by an unchanging interval of time.
+ Count windows are defined by an unchanging interval of number of events
processed.
Time Windows. In this case the interval is 3 minutes. The number of events in each

window can differ.

Ist a—m‘mute window and 3—minu’ce window

/\AAA/\/\

o -- . B '. /
6 min \ 3 min / b min

Remember!! The count of events can differ in
time-based windows. It's comple’celg ax:oep’cable
‘o have 3 in one window and 4 in another.

With count Windows, the number of events in each window will be the same. The time
intervals of each window can difSer.

Ist 3—count window and 3-count window
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Sliding windows

Another widely supported windowing strategy is a sliding window. Sliding windows are
similar to fixed time windows but different in that they also have a defined slide interval.
A new window is created every slide interval instead of when the previous window ends.
The window interval and slide interval allow windows to overlap, and because of this,
each event can be included into more than one window. Technically, we can say that a
tixed window is a special case of sliding window in which the window interval equals the
slide interval.

transaction
source

eoch of these brackets
represent o window of &
minutes with a I-minute slide
interval. The windows are
overlapping and the image is
not represented to scale.

windowed

proximi’cﬁ
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Sliding windows: Windowed proximity
analyzer

We could use a sliding window to look for repeated charges from the same card in over-
lapping windows of time. The diagram below shows one-minute sliding windows with
30-second slide intervals. When using sliding windows it’s important to understand that
an event may be included in more than one window.
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Detecting fraud with a sliding window

Sliding windows differ from fixed windows, as they overlap each other based on the spec-
ified interval. The slide provides a nice mechanism for a more evenly distributed aggrega-
tion of events to determine whether a transaction is to be marked as fraudulent or not.
Sliding windows help with the lopping off of events, as we saw in fixed windows.

A 00:12 | card no: ...1234 j‘\
‘ 00:49 | card no: ..6789
i !"A' | 00:55 card no: 1212
01:10 | card no: ..6789
V 01:26 | card no: ..2345
. -1- 01:37 | card no: ..1212
o _'__ . 01:42 | card no: 1212
o _Vf 02:22 | cardno: ...7865
! 02:38 | card no: ..4433

Qeod\\lj, whot we are
doing with sliding
windows is Heep'ms o
rolling context of dota
AN \\’—or us to reference and
,’decide it an event should
/' be marked as $raudulent

4

or not. Look below for a
different angle of
viewing a. slic\ing window.

As the window slides, the data elements it can make operations on changes. The gradual
slide or advance of what data it can reference offers a more gradual and consistent view

of data.

Pop Quiz!

Do you think the overlap on
sliding windows would be
better or worse for calculat-
ing averages? Why?

7
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N\
6789 1212 | 3476 1234| 1212| 1212 §f 3476

6789 I 1212' 3476

~
1234| 1212| 1212 || 3476




Session windows

Session windows

The last windowing strategy we would like to cover before jumping into the implemen-
tation is the session window. A session represents a period of activity separated by a
defined gap of inactivity, and it can be used to group events. Typically, session windows
are key-specific, instead of global for all events like the fixed and sliding windows.

The streom is for a speci?'\c
card, and each of these
brackets represents a
session window. Note thot
there is a gap between
them.

fransaction
source

windowed

proximi’cB
ol r
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Session windows (continued)

Session windows are typically defined with a timeout, which is the max duration for a
session to stay open. We can imagine there is a timer for each key. If there are no events
under the key received before the timer times out, the session window will be closed.
Next time, when an event under the key is received, a new session will be started. In the
diagram below, let’s take look at the transactions from two cards (session windows are
typically key specific, and the key here is the card number). Note that the threshold for
the gap of inactivity is 10 minutes.

\ \e
key spec\s‘r'\c. 0 ’c\'\\:h ev(::;%
e e &
axc £ 0c0NS) tne \«e‘% :,(he
n Jerticol \wne (e,prese

oS OF O SPed&-‘c -

. w'\(\dows ox

of cred®

each card hos its
own session

card no: ...1212

card no: ...6789

|
windot N wedowal
window ! 1 T oo :
| o055 §
: | : :
/ s E T .
: I I A
. | |
- Lo
The g T 01:37 :
00ty V€N the 01:42 |
than 4, Actiong g less | oo T I
€ 10— | [
thresholg; : ot | . e is greoter
cogaiiemeethey | | egppreresae
same ... Pedinto the : | than the 107N
Session Windogy, ! window 3 |y Hareshold, The previo
| e et Lon WINAOW 1S closed
| 1521 | ses® ion
on d o new cess!
! ] . a uwhen
[ 15:33 window is opene i
. 3
: ......... : .......... new ,«msack\ons. on thi
cord are received

fime



Detecting fraud with session windows

Detecting fraud with session windows

Session windows are relatively less straightforward than fixed and sliding windows. Let’s
try to see how session windows can potentially be used in the fraud detection job. We
don’t have an analyzer with this model in the current design; however, it could be a good
one to consider and a good example to demonstrate one use case of session windows.

When someone is shopping in a mall, typically they spend some time looking and
comparing first. After some time, finally a purchase is made with a credit card.
Afterwards, the shopper may visit another store and repeat the pattern or take a break
(you know, shopping can be strenuous). Either way, it is likely that there will be a period
of time where the card is not swiped.

01:40 01:40
I I
01:42 01:41
II 01:43
......... b 01:48
18:11 0152
""""" I —
| 02:05
I ......... | ........
el |
r' 42:24 | |
Th o o '
© transactiong loo .
o K more _ re suspicious
’crqnls?::_'mwre because The tronsochions :;:Kc::i\nuousﬁ ol
cese “tions are in Multiple becouse kheg e session window.
O Windows and therg . happen in & S0
39ps betweer, sessiong, ©

Therefore, if we look at the two card transaction timelines above, the timeline to the left
looks more legitimate than the one to the right, because only one or two transactions
happen in each short period of time (session window), and there are gaps between the
purchases. In the timeline to the right, the card has been charged many times continu-
ously without a reasonable gap.
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Summary of windowing strategies

We have gone through the concepts of three different windowing strategies. Let’s put
them together and compare the differences. Note that time-based windows are used in
the comparison, but fixed and sliding windows can be event count-based as well.

*  Fixed windows (or tumbling windows) have fixed sizes, and a new window starts
when the previous one closes. The windows don’t overlap with each other.

«  Sliding windows have the same fixed size, but a new one starts before the previous
one closes. Therefore, the windows overlap with each other.

« Session windows are typically tracked for each key. Each window is opened by
activity and closed by a gap of inactivity.

Fixeq ,):
. Win .
Size, apy dows have Pive Sliding windows have Sixed
over/qP Uoi:, "Ul'”dows doni size, 100, but the windows
®ach o, overlop with eoch other.
er,

lcard no: ...1234 \lcard no: ...5678 | card no: ...1212

Session windows are decided bﬂ
the activities and inactivities of
each Heg.
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Slicing an event stream into data sets

After all the concepts, let’s move on to the implementation-related topics. With window-
ing strategies, events are processed in small sets instead of isolated events now. Because
of the difference, the WindowedOperator interface is slightly different from the reg-
ular Operator interface.

Operodror instance executor

DUDD N Operator instance | _
apply(Event)

-

public interface Operator {
public void apply(Event event, EventCollector eventCollector);

}

Windowed operotor instance executor

windowed
operator instance d1- »

0000 - -

apply (EventWindow)

3

¥ K
oooa \ 1o event sets ond

o cliced . 4 .sent
4 operokors; events o° xs by e engin® &0
1 WIndowe theEventWindow okjee \n EventW indow
in tne .
wropped i 40 Pem:cors o proces_5 ke the tork on
X0 %6(’de¥‘ne des timing ingormokion
ncluoe

objeck 0lso !

ximes oF the window>

public interface WindowedOperator {
public void apply(EventWindow window, EventCollector eventCollector);

}
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Windowing: Concept or implementation

Fundamentally, a windowed operator is a mechanism to reorganize events as event sets,
and streaming engines are typically responsible for managing the event sets. Compared to
the jobs we have seen before this chapter, the streaming engines need more resources for
windowed operators. The more events there are in each window, the more resource the
streaming engines need. In other words, stream jobs are more efficient when the window
sizes are small. However, real world problems are often not that ideal. C’est la vie.

Some of you may have already seen the issues with using windowed operators to
implement the windowed proximity analyzer in the fraud detection job:

+ In this analyzer, we would like to track transactions far away from each other
and compare the distance and the time between them. More specifically, if the
distance is greater than 500 miles per hour times the time difference between
two transactions in hours, the operator will mark the transaction as likely
fraudulent. So do we need a multi-hour long sliding window? Hundreds of
billions of transactions could be collected in this window, which could be
expensive to track and process.

+ Things become more complicated when the 20-millisecond latency requirement
is taken into consideration. With a sliding window, there is a slide interval to
determine, and it needs to be short. If this interval is too long (for example, one
second), most transactions (those that happened in the first 980 milliseconds in
the second) are going to miss the 20-millisecond deadline.

It seems like we can't use the
windowing implemen’caﬁon to solve this
problem.

lligh’c. The basic Windowed
operators work in some simple
cases, but in this job we need to be
more creative.

oo LI

In conclusion, the concepts are useful for us to choose the right strategy for the problem,
but to implement the analyzer in the fraud detection job, we need to be more creative
than simply relying on the frameworks. Note that this is not a rare case in real-world
systems. Streaming frameworks are mainly designed for fast and lightweight jobs, but
life is never perfect and simple.



Another look

Another look

Now let’s see how the team solves the challenge and stops the gas thieves. The first step
is to understand how exactly the transactions are processed in the windowed proximity
analyzer.

In this operator, we want to track the times and locations of transactions on each card
and verify that the time and distance between any two transactions don’t violate the
rule. However, “any two transactions in the window” isn’t really a necessary statement.
The problem can be simplified if we look at it in a slightly different way: at any time when
a new transaction comes in, we can compare the time and location of the transaction
with the previous transaction on the same card and apply our equation. The past transac-
tions on the card, before the previous one, and all the transactions on the other cards
have no effect on the result and can be ignored.

The problem becomes much simpler
this wowy,

00:12 | card no: ...1234

00:49 | card no: ...6789

{00:55 card no: ..1212 '

01:10 | card no: ....6789

cor @ ach “msaﬁk\OH)
0!

01:26 | card no: ..2345 we just need e

! e\t
01:37 | card no: 1212 4—— it ’ch? P o
fronsoction on
come coxd

01:42 | card no: ..1212

02:22 | card no: ...7865

02:38 | card no: ..4433

Now since we have the equation already, the problem becomes pretty straightforward:
how do we find the previous transaction on the same card?

You might be wondering: what about the sliding window? Good question, and let’s
take another look at it too. The perimeter of the earth is about 25,000 miles, so 12,500
miles is the max distance between any two places on earth. Based on our 500 miles per
hour traveling speed rule, a person can travel to any place on earth within about 25
hours. Therefore, transactions older than 25 hours don’t need to be calculated. The
updated version of the problem to solve is: how can we find out the previous transaction
on the same card within the past 25 hours?
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Key-value store 101

After thinking about the calculation within the windowed proximity analyzer operator,
they decided to use a key—value store system to implement it. This is a very useful tech-
nique to build windowed operators without using the standard windowed operator sup-
port in streaming frameworks, so let’s talk about it here.

A key—value store (also known as a K-V store) is a data storage system designed for
storing and retrieving data objects with keys. It has been a very popular paradigm in the
past decade. In case you are not familiar with the term, it works just like a dictionary in
which each record can be uniquely identified by a specific key. Unlike the more tradi-
tional (and better known) relational databases, the records are totally independent from
each other in key—value stores.

key-value store
In Keg—\mdue stores, each record is

key 1 Record 1 4-7 associoted with o unique Keg. T\‘jpicod\g,
key 2 | Record 2 < on|3 two basic and s’cmjsh’c?orward

key 3 Record 3 | < functions are needed: get (key), and
put (key, value).

Why would we want storing systems that have fewer functions? The major advantages are
performance and scalability. Because key—value stores don’t need to keep track of the rela-
tions between different records, rows, and columns, the internal calculations can be a lot
simpler than the traditional databases. As a result, operations like reading and writing run
much faster. And because the records are independent of each other, it is also much easier
to distribute data on multiple servers and make it work together to provide a key—value
store service that can handle a huge amount of data. The two advantages are important for
the fraud detection system as well as many other data processing systems.

Another interesting feature supported by some key—value stores is expiration. An
expiration time could be provided when a key—value pair is added into the store. When
the expiration time comes, the key—value pair will be removed automatically from the
system and the occupied resources will be freed. This feature is very convenient for win-
dowed operators in streaming systems (more specifically, the “within the past 25 hours”
part of our problem statement).
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Implement the windowed proximity analyzer

With the help of this key—value store, streaming engines don’t need to keep and track all
the events in the windows in memory. The responsibility has been returned to the sys-
tem developers. The bad news is: the usage of a key—value store can be different from case
to case. There is no simple formula to follow when implementing windowing strategies
with key—value stores. Let’s take a look at the windowed proximity analyzer as an
example.

In the analyzer, we need to compare the time and location of each transaction with
the previous transaction on the same card. The current transaction is in the incoming
event, and the previous transaction for each card needs to be kept in the key—value store.
The key is the card id, and the value is the time and location (to keep it simple, in the
source code that follows the whole event is stored as the value).

public class WindowedProximityAnalyzer implements Operator {
final static double maxMilesPerHour = 500;

final static double distanceInMiles = 2000; A ¥
final static double hourBetweenSwipes = 2; oPerakor instead o

final KVStore store; windowedOPera’cor is used here.

public setupInstance (int instance) {
store = setupKVStore(); ¢ Set UP the Keg—\/oduue store.

}

public void apply (Event event, EventCollector eventCollector) {
TransactionEvent transaction = (TransactionEvent) event;
TransactionEvent prevTransaction = kvStore.get(transaction.getCardId()) ;

uhe previous transaction is loaded

from the key-value store.
boolean result = false;
if (prevTransaction != null) ({
double hourBetweenSwipe =
transaction.getEventTime () - prevTransaction.getEventTime () ;
double distanceInMiles = calculateDistance (transaction.getLocation(),

prevTransaction.getLocation());

if (distanceInMiles > hourBetweenSwipe * maxMilesPerHour) {

// Mark this transaction as potentially fraudulent. Froaudulent transaction
1t = ; — .
} result = true is detected.
}
eventCollector.emit (new AnazlyResult (event.getTransactionId(), result));

kvStore.put (transaction.getCardId(), transaction);

}

The current fransaction is stored into
the Heg—\/odue store using the card id
as the He5. The previous value is
replaced now.
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Event time and other times for events

There is one more concept we will cover before wrapping up this chapter. In the code of
the windowed proximity analyzer, there is one important piece we would like to zoom in
and take a closer look at.

transaction.getEventTime();

So what is event time? Are there other times? Event time is the time at which the event
actually occurs. Most processes on the event don’t happen immediately. Instead, after
the event has occurred, it is normally collected and sent to some backend systems later,
and then even later it is really processed. All these things happen at different times, so
yes, there are quite a few other times. Let’s use our simple traffic monitoring system as
the example and look at the important times related to an event.

i oand
Time & ovenicle s de’cecked

i event S Time 3
the wrre%99nd\ Se,\/en’v tme. by 4 eve
created. TS S e ee Sensor e SCeiveq
S "ver ree, . This IS
Ve time,
D '
vehicle counter
~ N v
& ~ .-
10T sensor .
v reoder
C\: - ~o 1
7
i’ vehicle counter
ﬁ
Time a: the event is uplg . ived b
to the sensor rend P éded Time 4: the event is recel Y
the up| - This is this venicle counter instance
Upload time, and pr ocessed. This is the

Processmg Xime.

Among all the times, the most important ones for each event are event time and process-
ing time. Event time for an event is like the birthday for a person. Processing time, on the
other hand, is the time at which the event is being processed. In the fraud detection
system, what we really care about is the time when the card is swiped, which is the event
time of the transaction. Event time is typically included in the event objects so that all
the calculations on the event have the same time to get the consistent results.
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Windowing watermark

Event time is used in many windowed computations, and it is important to understand
the gap between event time and processing time. Because of the gap, the windowing
strategies we have learned in this chapter aren’t as straightforward as they look.

If we look at the traffic monitor system as an example and configure the vehicle
counter operator with simple fixed windows to count the number of vehicles detected in
each minute, what would be the open and close times for each window? Note that the
time for each event to arrive at the vehicle counter operator instances (the processing
time) is a little after it is created in an IoT sensor (the event time). If the window is closed
exactly when the end of the window comes, the events occurring near the end of the
window on the IoT sensors will be missing because they haven’t been received by the
counter instances yet. Note that they can’t be put into the next window because, based
on the event time, they belong to the already-closed window.

detected here ok I$ the window is closed at exactly the end of the time
a venicle m\s\f\’c be : e o time window:  window, some vehicles detected bﬂ the 10T sensors could
rhe end of the I-minLk be missing because theg havent arrived here Be’c.
e
( ) ( vehicle counter
| ~ b4
~ e
o0a | "~y loT sensor e
reoder
. -, of ~ N |
e A vehicle counter

The solution to avoid missing events is to keep the window open for a little longer and
wait for the events to be received. This extra waiting time is commonly known as the
windowing watermark.
The extro
Fhe windowing W

waiting Yime i
oK.
oerm The window is closed a little loter than

, the window end time *o wait for the
The previous A

. _— -4—\ events to arrive. Note that o new
event window \ j window has been opened ok the time
——

and the incoming events will be
ass'\gned +o one of them based on the
event time.

The new event window — _

If we look back at the implementation of the windowed proximity analyzer, the water-
mark is another reason the standard windowed operator is not ideal for the case. Leaving
extra time before processing event sets would introduce extra latency and make the
20-millisecond latency requirement even more challenging to meet.
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Late events

The windowing watermark is critical for avoiding missing events and generating com-
pleted event sets to process. The concept should be easy to understand, but deciding the
waiting time isn’t as easy.

For example, in the traffic monitoring system, our IoT sensors work very well. As a
result, normally, all the vehicle events are collected successfully within one second. In
this case, a one second windowing watermark could be reasonable.

Mormod\g, all events should arrive within | second after kheB oare
creoted. A I-second window‘ms watermark could be reasonoble.

( ) \> vehicle counter
ﬁ N b 4
oa | "~y 10T sensor -7
D

reoder

., vehicle counter

However, the word normally might trigger an alert. Earlier in the book, we mentioned a
few times that one major challenge in building any distributed system is failure han-
dling. It is often a good habit to ask: what if it doesn’t work as expected? Even in a simple
system like this one, events could be delayed to be later than one second if something
goes wrong—for example, the sensor or the reader could slow down temporarily, or the
network could be throttled if the connection is not stable. When this delay happens, the
events received after the corresponding window has been closed are known as late events.
What can we do about them?

Sometimes, dropping these late events could be an option, but in many other cases, it
is important for these events to be handled correctly. Most real-world streaming frame-
works provide mechanisms to handle these late events, but we will not go into more
detail, as the handling is framework-specific. For now, the key takeaway is to keep these
late events in mind and not forget about them.

¥ \_Things can go wrong so that events
m'\sh’c arrive later than the expected

d > time and become late events. -—1 vehicle counter
N / { P4

~ s

10T sensor L7
7’
reoder

~
s A .
( ), vehicle counter
&




Summary

Summary

Windowed computation is critical in streaming systems because it is the way to slice
isolated events into event sets to process. In this chapter, we have discussed three stan-
dard windowing strategies widely supported by most streaming frameworks:

» TFixed windows
+ Sliding windows
+  Session windows

The basic support in streaming frameworks has its own limitations and may not work in
many scenarios. Therefore, in addition to the concepts and how the streaming frame-
works handle the windowed operators, we have also learned how to use a key—value store
to simulate a windowed operator and overcome the limitations.

At the end of the chapter, we also covered three related concepts that are important
when solving real-world problems:

+ Different times related to each event, including event time versus processing time
+  Windowing watermarks

* Late events
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Exercise

1. At the beginning of the chapter, we mentioned that we have two ways to prevent
fraudulent credit card transactions:

* We can block individual credit cards from being charged.
+ We can block gas stations from processing any credit cards.

Afterward, we focused on detecting issues on individual credit cards but haven’t
paid much attention to the second option. The exercise for you is: how can we
detect suspicious gas stations, so we can block them from processing credit cards?



Join operations 8

In this chapter

- correlating different types of events in real time
« when to use inner and outer joins

- applying windowed joins

‘ ‘ An SQL query goes into a bar, walks up to two tables, ’ ,

and asks, canljoin you?

—ANONYMOUS

If you have ever used any SQL (structured query language) database, most
likely you have used, or at least learned about, the join clause. In the stream-
ing world, the join operation may not be as essential as it is in the database
world, but it is still a very useful concept. In this chapter, we are going to
learn how join works in a streaming context. We will use the join clause in
databases to introduce the calculation and then talk about the details in
streaming systems. If you are familiar with the clause, please feel free to
skip the introduction pages.
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Joining emission data on the fly

Well what do you know? The chief got lucky and fell into an opportunity of tracking the
emissions of cars in Silicon Valley, California. Nice, right?

Well, with every great opportunity comes challenges. The team is going to need to
find a way to join events from vehicles in specific city locations along with the vehicles’
estimated emission rates on the fly. How will they do it? Let’s check it out.

| wonder what gotchoas
would show up while
Jjoining data.in real time?

DABKS
B0 = M
TR
SEASISS
,

J)I At the same time, each square unit on the
map is being measured for air quality by
sensors planted ’chroughou’c eoch Srid. we
need to keep track of what vehicles are
9oing {:hrough each zone.
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The emissions job version 1

They have already implemented a first version of the emissions job. The interesting part
of the job is the data store to the right of the emission resolver. It is a static lookup table
used by the emission resolver to search for the emission data of each vehicle. Note that
we assume that the vehicles with the same make, model, and year have the same emis-
sions in this system.

g Jent source accepts the This data source here is astatic
The Veh\d?*:eo\ Srom vehicles: reference that has emission
( events emt data of difSerent vehicles.
time: ......
make: ...., \ Vvehicle event
peers source
location: .....
} { 1
time: .... !
make: ...., :
e
: zone emission
resolver
For each vehicle event, the /’ '
emission resolver searches time: .... 1
the Co, emission data. in the zones ..., ,
dada. store Sor the vehicle ) 602_emission: v —The Following aggregador
e e rocel e prmera TGS o
The combined dota will be
emitted into the windowed aggregator aggrega’ces the total
agoreg odor- emission in the 2one.

The results are all written
+0 a. datobase $or further
processing and/or analysis.
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The emission resolver

The key component in this job is the emission resolver. It takes
a vehicle event, looks up the emission data for the vehicle in the
data store, and emits an emission event, which contains the
zone and emission data. Note that the output emission event
contains data from two sources: the incoming vehicle event
and the table.

Vehicle
Event Source

Windowed
Aggregator

v

Year

Emission

2020

cc

2021

" class EmissionResolver extends Operator {
private final Table emissionTable = ...... ;

public void apply(Event event, EventCollector eventCollector) ({
“*--p VehicleEvent vehicleEvent = (VehicleEvent) event.getDatal() ;

double emission = emissionTable.getEMiSSion ( ..c.eeveveeneenemeenessto™""

vehicleEvent.make, vehicleEvent.model, vehicleEvent.year
)i

eventCollector.add(
new EmissionEvent (vehicleEvent.zone, emission)

)i A

zone: .....

co2_emission: ....
}

emission dofo.is
oukpuk e\lef\‘b

included in the

This operator can be considered a very basic join operator, which combines data from
different data sources based on related data between them (vehicle make, model, and
year). However, the emission data is from a table instead of a stream. Join operators in

streaming jobs take it one step further by providing real-time data.
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Accuracy becomes an issue

The job works OK in general, and it generates real-time emission data successfully.
However, one important factor in the equation is missing: temperature (you know, CO,
emission varies under different temperatures, and there are different seasons in
California too). As a result, the emissions per zone reported by the system are not accu-
rate enough. It is too late to add a temperature sensor to the devices installed on each
vehicle now, so it becomes the team’s challenge to solve in a different way.

We are hm/ins N 0CCUrocs prob|em thot
seems 1o be related to us not ’cang into
account the current temperature.
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The enhanced emissions job

The team added another data source to bring current temperature events into the job for
more accurate reporting. The temperature events are joined with the vehicle events using
the zone id. The output emission events are then emitted to the emission resolver.

gach 2one in the city has been equipped
with its own temperature sensor. each
sensor measures the temperature

every 10 minutes, then reports a

’cempera’mre event to the ’cemperod:ure

event source.

(The old version)

vehicle event]
source

v

Zmission
resolver

y

windowed

aagregafor

It

—

oy S
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GOEED
o) =
FOE) 0%

}'vx'\ D ]

o4 Lo &

[ &
2y &
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[Cat G & o 5]

The ’cemperodcure event source

accep’cs ’cempera’cwre doto

CThe new version ) $rom throughout the city.

{

Vvehicle event

Temperod:ure

zone:

}

one?

source event source
~ rd
N ’
~ 7
~ e
\ ¥
Inctead of vehicle &\{en’c
events, the emission Joiner
1
resolver now !
Processes vehicle- \ 4
yemperodure events gmission |
in the new version- resolver
1
1
v
whoa whoa! How are windowed
the two streams joined into ) |99regator

v
-—
|-|

The event joiner joins
dodo. Srom both doo.
source streams in real
time and emits vehicle-
’cemperoecwre events.
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Focusing on the join

The major changes in the new version are:

+ The extra data source that accepts temperature events into the job

+ The event joiner that combines two streams into one

o

The vehicle event
source receives

data $rom vehicles in
I=minute intervals.

di%ferent times?

[
o

a:

vehicle event

1$ everything is in real time, how
do we correlate events from

Tempero@cure
event source
rd

source
~
S 7
AN .7 The ’cempera’cure
= £ event source receives
event events $rom sensors in
Joiner 10-minute intervols.

maﬂbe the events from ditferent
streams need to be sanchronized inthe
Jjoin operator?

The event joiner combines
the events in the two
incoming streoms into one
ou’cso‘\ng event stream.

The temperature event source works like normal sources, which are responsible for
accepting data into stream jobs. The key change is the newly added event joiner operator,
which has two incoming event streams and one outgoing event stream. Events arrive in
real time, and it is really rare for the events from the streams to be perfectly synchro-
nized with each other. How should we make different types of events work together in
the join operator? Let’s dig into it.
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What is a join again?

It’s probably natural to think of SQL when someone refers to a join operator. After all,

join is a term that comes from the relational database world.

Ajoin is an SQL clause where you take a certain number of fields from one table and
combine them with another set of fields from another table, or tables, to produce con-
solidated data. The diagram below shows the join operator in terms of relational data-

bases; the streaming join is discussed in the following pages.

C Vehicle event table )

make model year zone
XXX AR 2020 3
YYyY cC 2013 1
227 DD 2017 2
XXX AA 2008 1
XXX BB 2014 1
227 EE 2021 3
227 EE 2018 5

( Temperature table )

zone

temperature

[

95.4

94.3

wl N

95.1

95.2

95.3

The two tobles have a. common field:
20ne. It is the relotionship between the

tobles.

SELECT v.time, v.make, v.model, v.year, t.zone, t.temperature
FROM vehicle events v
INNER JOIN temperature t on v.zone = t.zone;

C Joined table )

The join results of the above
tables could look like this.

make model year zone temperature
XXX AA 2020 95.1
YYY cc 2013 95.4
227 DD 2017 94.3
XXX AA 2008 95.4
XXX BB 2014 95.4
227 EE 2021 95.1
227 EE 2018 95.3
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How the stream join works
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How can we make joins on data that is constantly moving and being updated? The key is
to convert the temperature events into a table.

The vehicle event
source receives
data. $rom vehicles

N

in I-minute intervals.

200m in on the gvent Joiner.

vehicle event
source

vehicle event Tempera’cure
source event source
~ rd
A 7

\ ( Event joiner ) ‘ ),
\ 1
\

The temperature event
source receives events
from sensors in 1I0-minute
intervals.

N e
DR ’ \These temperature

event events are used to
- update the rows in the
joiry
temperature table below.
Temperodrure
event source
1

. As ’cempera’cure events

come in, ’ch65 are either

TR . - T L2 ‘ . .
| make: *xxx 3. Join the vehicle 1 . 3 | updoding existing rows or
; model: AA eV?ﬂf with :} temperature: 95.2 F added os new rows in the
' : 202 . " f .
rene 3 femperatwre Lo temperodure table in
L , .. tobleonzone. ione | temperature [~ | real time. In other words,
I ' ; 1! 95.4 1 ] 4his table is an ever-
P Voo [ S 94.3 ' /chomging set of in-memory
make: XXX, | :}7 BN 734: 7777777777 95.2 E - reference dato. It is
model: AA, ! bo------o- FosnEett oo 4
yeaj: 2020, ; | 4 95.2 ! constantly updated by the
zone: 3, : T 51T 555 temp events stream.
temperature: 95.2 4:‘ B
e v . {
1 \ \
|' 3. T fur xoxe ®
. Temperoture g
\ TS
* . Pe I \Jo {2 T mo(g 0“\\:9
data is added into TENE (0 €
gmission the vehicle event. xer PO’ e
resolver J: Uk
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Stream join is a different kind of fan-in

In chapter 4, we discussed the fraud detection scenario where we aggregated the fraud
scores from the upstream analyzers to help determine whether a transaction was fraudu-
lent or not. Is the score aggregator the same type of operator?
The answer is no. In the score aggregator, all the incoming streams have the same
event type. The operator doesn’t need to know which stream each event is from, and it
just applies the same logic. In the event joiner, the events in the two incoming streams
are quite different and handled differently in the operator. The score aggregator is a
merge operator, and the event joiner is a join operator. They are both fan-in operators.

Average Average Average Vvehicle event Temperoture
ticket ticket ticket source event source
analyzer analyzer analyzer S .
S~ o [ Phe AN .7
.. | -7 A X
TA Yy &7 event
Score Joiner
reqotor n
2399 7 In the event joiner, !
we are joining +wo
J \

The score aggrega’cor wos
collecting results of 3 different

upstream anodl:)?,ers, but the
omodgzers emitted the same ’cﬂpe
of events. We consider this o

merge.

di¥Serent types of
data together. Thig

operator i considered
& join.

A more abstract view of merge:
streams of dato &Bpe A are
combined ’coge’cher bﬂ a merge

opera’cor.
Doto A Dato A Dato A
~ ! ”
~ - - | _ -

merge

A more abstract view of join:

streams of diterent

’cbpes of

dato. are joined together by a

Join operactor.

Doto A

Doto. &

Join
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Vehicle events vs. temperature events

Note that in the join operator, the temperature events are converted into the temporary
temperature table, but the vehicle events are processed as a stream. Why convert the tem-
perature events instead of the vehicle events? Why not convert both streams into tables?

These questions can be important
when you build your own systems.
First, one outgoing event is expected
for each incoming vehicle event. So it
makes sense to keep the vehicle events
flowing through the operator like a
stream. Secondly, it could be more
complicated to manage vehicle events
as the lookup table. There are many
more vehicles than zones in the sys-
tem, so it would be much more expen-
sive to keep the vehicle events in a

make: XXX
model: AA
year:
zone: 3

make: XXX,
model: AA,

zone: 3, A
temperature: 95.2

, year: 2020, Ll

zone | temperature |
777777777 Fmmmmm e
1! 95.4 !
777777777 Fmmmm ey
2! 94.3 !

..... e et
3 95.2 !
777777777 B
4, 95.2 !
7777777 e ey
5! 95.3 !

temporary in-memory table. Furthermore, only the latest temperature for each zone is
important for us, but the vehicle event needs to managed (adding and removing) more care-

tully, since every event counts.

Anyway, let’s put the vehicle events into a table and then join them with the stream of
temperature events. There will be multiple rows for each zone in the table, and the results
will be event batches instead of individual events.

T ¥ 1 each new
zzzzlzéé vehicle event is
E year: 2021, E appendedin’co
;} zone: 3 | the table.

' make | model ' year ' =zone |
" xxx'  aa 2020 30
U yyy et 20130 1
xxx ' BB 2014 - 1
" zzz’  EE. 2021 3

2. Two rows in the vehicle
table are found for the
20ne. The3 need to be
removed afterwords.

oA make: ZZZ,

zone: 3,

make: XXX,

, model: AA,

| year: 2020,

| zone: 3,

3 temperature: 95.2
3

i

' model: EE,

| year: 2021,
| zone: 3,

3 temperature:

3. One temperature
event is received from
eoch 2one every IO
minutes, and it is joined
with the vehicle table.

~

4. Two result events
of the join operator
are emitted out. In
the real world, there
could be a lot more.
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Table: A materialized view of streaming

We are going to be a little more abstract here: what is the relationship between the tem-
perature events and the temperature table? Understanding their relationship could be
helpful for us to understand what makes the temperature events special and make better
decisions when building new streaming systems.

One important fact about temperature data is that, at any moment, we only need to
keep the latest temperature for each zone. This is because we only care about the latest
temperature of each zone instead of the individual changes or the temperature history.
The diagram belows shows the changes of the temperature table before and after two
temperature events are received and processed.

Two kemperodrure events are
received and used to upda’ce the

temperature table.
d € are
Updated oy,
erfhe{.w
ey : : events are 0
1 zone: 3 E | zone: 1 . Processed,
, temperature: 95.0 ! | temperature: 95.4 i
i} : 1} !
| zone | temperature | .., zone | temperature | ,. zone | temperature |
Fmmmmm e m - o D 1 B Fmmmmmm e m e 1 [ 4
! 1! 95.4 ! " 1! 95.4 ! ! A 95.4
Fommmmmmen Fommmemem——aan ' [ Fommmememm—aan ' bomemmena- bommm e 4
! 2! 94.3 ! ! 2! 94.3 ! 2! 94.3 !
Fommmmmmen $emmmemem——aan ' Fommar e ' bomemmena- $omemmmmeaaaas 4
! 3! 95.1 ! ! 3! 95.0 ! ; 3! 95.0 !
Fommmmmmen $emmmemem——aan ' Fommmmmen Fmmmmmmmeeaaa y bmmmmmmmm - bommm e 4
! 4 95.2 1 _ g | 4 95.2 | _ _ p | 4! 95.2 | o 3
Fommmmmmen $ommmemem——aan ' Fommmmmen Fommmememm—aan ' bomemmena- $omemmmmeaaaas 4
; 5! 95.3 ! ; 5! 95.3 ! ; 5! 95.3 !
time

Each temperature event is used to update the table to the latest data. Therefore, each
event can be considered a change of the data in the table, and the stream of the events is
a change log.

On the other end, when a join happens, the lookup is performed on the temperature
table. At any moment, the temperature table is the result after all the events up to the
specific point of time have been applied. Hence, the table is considered a materialized
view of the temperature events. An interesting effect of a materialized view is that the
event interval is not that important anymore. In the example, the interval of tempera-
ture events for each zone is 10 minutes, but the system would work the same way whether
the interval is one second or one hour.
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Vehicle events are less efficient to be
materialized

On the other hand, compared to the temperature events, the vehicle events are less effi-
cient to be materialized. Vehicles move around the city all the time, and every single
vehicle event for the same vehicle needs to be included in the join instead of the latest
one. As a result, the vehicle events table is basically a list of pending vehicle events to be
processed. Plus, the number of vehicles is likely to be much greater than the number of
zones normally. In conclusion, compared to the temperature events, the vehicle events
are more complicated and less efficient to be materialized.

A vehicle event is received and
appended into the vehicle event

table. l
................... (0]
{ N€ more roy, g
. . + n the
| make: ZZZ lee a_‘}{.er
| model: EE ' event ; the Vehlcle
E year: 2021, 5 nt is Processed.
\ zone: 3 !
) ’
, make | model |, year | zone | , make | model | year | zone |
[ O —— P — P ’ [ O —— P — P ’
LoxXxX ! aa ! 2020 ! 3! LoxXxx ! AR 2020 ! 3!
[ O —— P P ’ [ O —— P P ’
Loyyy ! cc'! 2013 ! 1! S yyy ! cc'! 2013 ! 1!
bmmmm— - L dmmmmmm - oo L 1 P R R L 1
boxxx ! BB | 2014 ! 1T TP xxx ! BB ! 2014 | 1!
************************************** T Trrreeeee
| 222 | EE | 2021 | 3
time

The diagram above shows the vehicle events are appended into the table instead of being
used to update rows. While there are some things we can do to improve the efficiency,
such as adding an extra count column and aggregating rows that have the same make,
model, year, and zone instead of simply appending to the end of the table, it is quite
clear that the temperature events are much more convenient to be materialized than the
vehicle events. In real-world problems, this property could be an important factor to
help decide how the streams should be handled if a join operator is involved.
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Data integrity quickly became an issue

The emissions job worked great to help keep track of emissions throughout the area the
team planned for. But guess what? People use applications in ways they weren’t meant to

be used.

The sgs’cem is repor’dng a bunch
ot errors.

The vehicles are drivins outside
of the planned bounds. How can we
account for this?

Why does this issue happen, and how we can address the issue? We will need to look into
different types of join operators.
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What'’s the problem with this join operator?

The key to this join operator is obtaining the temperature for a given zone. Let’s take a
look at a table-centric representation of the operator below. In the diagram, each vehicle
event is represented as a row in the table, but keep in mind that the vehicle events are
processed one by one like a stream. Another important thing to keep in mind is that the
the temperature table is dynamic, and the temperature values could change when new
temperature events come in.

( Vehicle event stream )
C Temperature table )

make | model | year zone
Xt Bl 2020 £y , | ome | temperature |
YYY | cc, 2013, 1 3 77777777 1 7? 7777777777 9 757.744}
227 DD, 2017, 2 3””””27? 7777777777 9 747.734}
XXX | AA 2008 1 3””””37? 7777777777 9 757.707?
XXX | BB , 2014 1 3””””47? 7777777777 9 757.724}
227 EE | 2021, 3 3””””57? 7777777777 9 757.734}
227 EE | 2018 s
YYY ! cc! 2015 ! X
: : L

).
femperql effe)qs{- in{'h make | model | year | zone |, temperature
able, XXX ! AR 2020 ! 3! 95.0
YYy ! cc! 2013 ! 1! 95.4
what should we do if a 227 ! DD ! 2017 ! 2! 94.3
vehicle event comes in with an ; ; ; ;
unknown zone? XXX | AR} 2008 1! 95.4
XXX ! BB ! 2014 ! 1! 95.4
227 ! EE ! 2021 ! 3! 95.0
227 ! EE ! 2018 ! 5! 95.3
Yyy'! cc! 2015 ! X! 222
‘ ‘ ‘ ‘

® W@

Now, the data integrity issue is caused by a special case: the zone 7 in the last vehicle
event is not in the temperature table. What should we do now? To answer this question,
we need to discuss two new concepts first: inner join and outer join.
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Inner join

Inner join processes only vehicle events that have matching zone in the temperature
table.

( Vehicle event stream )

make | model | year zone
XXX ! an ! 2020 ! 3
Yy ! ' 2013 1 ( Temperature table )
727 ! DD ! 2017 ! 2
e o TR - | zone | temperature |
AT S |
XXX | BB | 2014 | 1 lll 7777777777 9 757.747{‘
227 ! EE' 2021 3 S 94-3,
227 ! EE' 2018 ! 5 S . 95-0,
YYy ! cc ! 2015 ! X 4 7777777777 9 52
' ' ' | 5 95.3
1 1 L Y
C Outgoing stream )
y
make | model | year | zone | temperature
h XXX ! AR 2020 ! 3! 95.0
€ I |
M esult! Note that Yyy ! cc! 2013 1! 95.4
ere ig
ot | {hno (‘—Oﬂ'eSpondjn 227 | DD | 2017 | 2 94.3
N the r
esult table XXX ! AR! 2008 ! 1! 95.4
For the last Vvehicl : : : :
event, be e XXX ! BE ' 2014 1! 95.4
» Peause 2one x
doesﬂ’fexis{- in th 222 ! EE ! 2021 ! 3! 95.0
e
{'emperod e table 222 ! EE ! 2018 ! 5! 95.3
ol o Lo !

If you look carefully at the above result of the join operator, you will see that there is no
row in the result associated with zone 7. This is because inner joins only return rows of
data that have matching values, and there is no zone 7 in the temperature table.

With inner join, emission in these unknown zones will be missed, since the vehicle
events are dropped. Is this a desirable behavior?
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Outer join

Outer joins differ from inner, as they include the matching and non-matching rows on a
specified column or data. Therefore, no event will be missing, although there could be
some incomplete events in the result.

( Vehicle event stream )

make | model | year zone
i i i
- B - C Temperature table )
YYY | cc, 2013, 1
. vy i I | zome | temperature |
XXX | BA 2008 1 ol 95.4 !
XXX | BB | 2014 1 :*””””2’:* ””””” 5 ’4"’3’*:
777 | EE | 2021 3 :*””””3’:* ””””” 5 ’5"’0’*:
777 | EE | 2018 5 :*””””4’:* ””””” 5 ’5"’2’*:
YYY | cc 2015 X :*””””5’:* ””””” 5 ’5"’3’*:
i | e
COutgoing stream )
4
make | model | year | zone |, temperature
XXX | AR | 2020 3 95.0
YYY | cc 2013, 1, 95.4
222 ! DD ! 2017 ! 2! 94.3
XXX ! AR ! 2008 ! 1! 95.4
XXX ! BB ! 2014 ! 1! 95.4
222 ! EE ! 2021 ! 31 95.0
%27 | EE | 2018 5 95.3
YYY | cc 2015 X, null
e e .- , <\

1 vehicle events are repor’ced

With the outer join we in Zones without recorded
have a chance to handle temperatures, we would see o result
the special case later. cimilar +o this. 1§ this were an innex
_join, the last row would not be
emitted.

The team decided to do an outer join to capture non-matching rows and handle them later.
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The inner join vs. outer join

Vehicle events that have no matching data in the temperature table are handled differ-
ently with inner and outer joins. Inner joins only return results that have matching val-
ues on both sides, but outer joins return results whether or not there is matching data.

( Vehicle event stream )

make , model , year ,  zome C Temperature table ’
XXX | AR ! 2020 ! 3
YYY | cc 2013 ! [ RS » | zone | temperature |
222 ! DD! 2017 2 T 1 95.4 !
XXX | AR ! 2008 ! 1 2 ””””” 9 ’4’,’3’;
XXX | BB | 2014 ! 1 3 ””””” 9 ’5’,7071
222 | EE | 2021 ! 3 ;””””4’; ””””” 9 ’5’,’2’;
222 | EE | 2018 ! 5 5 ””””” 9 ’5’,’3’;
Yyy ! cc! 2015 <\
: : : .§s\°_.-
oK.
\(\(\
Outgoing stream
‘ .
- Q
make | model | year |, zone , temperature B g\,
Q@
XXX ! AR 2020 ! 3! 95.0 Lo
)
YYY ! cc! 2013 ! 1! 95.4 L3
227 ! DD ! 2017 ! 2! 94.3 :
XXX | AR | 2008 ! 1! 95.4
XXX | BB ! 2014 ! 1! 95.4
222 | EE ! 2021 ! 31 95.0 B
222 ! EE ! 2018 ! 5 95.3 :
, , , , Outgoing stream
cee ey sy 1 ... ‘
make | model | year | zone | temperature
XXX | AR ! 2020 ! 31 95.0
YYY ! cc! 2013 ! 1! 95.4
222 | DD ! 2017 ! 2 94.3
XXX | AR ! 2008 ! 1! 95.4
XXX | BB ! 2014 ! 1! 95.4
222 ! EE ! 2021 ! 31 95.0
222 | EE ! 2018 ! 51 95.3
YYy ! cc ! 2015 ! X! null
1 1 1 1
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Different types of joins

If you are familiar with the join clause in databases, you will remember that there are a
few different types of outer joins: full outer joins (or full joins), left outer joins (or left
joins), and right outer joins (or right joins). All join operators are included in the diagrams
that follow to illuminate the differences in the context of an SQL database.

Inner joins only return results thot § Full outer joins return all results
have matching values in both in both tables.
tables. :

vehicle
events

Left outer joins return all results Right outer joins return all results

in the vehicle events table and in the temperature toble and
only maztching rows rom the only maztching rows from the
temperature toble. vehicle events toble.

vehicle
events

emperature
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Outer joins in streaming systems

Now we know the inner and outer joins in SQL databases. Overall, things are pretty
similar in the streaming world. One difference is that, in many cases (such as the CO,
emission job), events in one of the incoming streams are processed one by one, while the
other streams are materialized into tables to be joined. Usually, the special stream is
treated as the left stream, and the streams to be materialized are the right streams.
Therefore, the join used in the event joiner is a left outer join

With left outer join, the team can identify the vehicles that are moving outside of the
planned area and improve the data integrity issue by filling in the average temperature
into the resulting vehicle-temperature events instead of dropping them. The results are
more accurate now.

Temperodrure
event source

Vvehicle event

source
\ II
\ 1
. \
The specia — d
S-h-ean_ is :'{ ""7""7: ' Thes’«eamko
. ' make: YYY ! T ali
{BP‘W‘\U the ' model: CC ! },,,zf‘,n,e,,,l,,t,efn?ir,afl{{?,f be mod:er\od\zed
left stream, | year: 2015, | 1 95.4 | L is ’cgp'\cod\ﬂ the
;) zone: X ' : 2! 94.3 ! r'\Sh’c stream.
v | R e i 4
. ! 3! 95.0 !
v o PR 95.2 !
T S |
E make: YYY, e ° L ’ ,5:,3,J
! model: CC, E
| year: 2015, .
| zone: X, |
E temperature: null -> 95.0 <
Do \
\
\ .
e\nkhe
\ The nul\ kemperoécwr h
Y . tisr \oced Wi
xooino event is Yep
outgoind rokure of the
£mission Yne averoge tempe
resolver whole areo.

Note that in more complicated (hence, interesting) cases, there could be more than one
right stream, and different types of joins can be applied to them.
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A new issue: Weak connection

After fixing the data integrity issue, the team noticed another problem a few weeks later:
some values in the temperature table look strange. After investigating, they found the
root cause: one sensor has connection issues, and sometimes it reports temperature suc-
cessfully every few hours instead of every 10 minutes. The issue can be fixed by repairing
the device and its connection, but at the same time, can we make the system more resil-
ient to the connection issues?

= DX V-‘N
r'»") ré& (l\ X\}‘ ' zone | temperature '
) 5y K S < i ] LI | erperemEEe !
liesf Nt Nt (=-2] The connection of this : n o
= BN Y i sensor is not reliable, and R LT !
N '?a ORe ) . ' | 2| 94.3 |
oa s o\ this temperature volue L LT !
. . . ! ! 1.2
KPS 0% 5 in the table is outdoted \’ R SR, 2.
i B | 7 b . 1 1 1
[Fm| b o >4 o becouse it hasnt been TS 95-2,
"Qj & , ‘ updated for a few hours. | 5 95.3
g i Iy T T T
e B e B =

%) 9 |

aul =
[B53] o= 2w

In general, streaming systems have to
account for the possibility that some of

their event sources might be unreliable.
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Windowed joins

A new concept can be very helpful for making the job handle the unreliable connection
issue: windowed joins. The name explains itself well: a windowed join is an operator that
combines both windowing and join. In the previous chapter, we discussed windowed
computation in detail. The details are not required here, so don’t worry if you picked this
chapter to read first.

With windowed joins, the job works similarly to the original version: the vehicle
events are handled one by one, and the temperature events are materialized into a lookup
table. However, the materialization of the temperature events is based on a fixed time
window instead of the continuous events. More specifically, temperature events are col-
lected into a buffer first and materialized into an empty table as a batch every 30 min-
utes. If all the sensors report data successfully in the window, the calculation should
work just fine. However, in case no temperature event is received from a sensor within
the window, the corresponding row in the lookup table will be empty, and the event
joiner can then estimate the current value from the neighbor zones. In the diagram
below, the temperatures in zone 2 and 4 are used to estimate the temperature of zone 3.
By using a windowed join, we can make sure all the temperature data in the table is
up-to-date.

| all incoming ’cempera’cure

e /’ events are put into this
E make: XXX ! M" buffer first and
. model: AA . . C . .
! year: 2020, ; . Y———T madterialized into a. new
zone: 3 e Y toble ever5 30 minutes.
i} | zone | temperature
......... R
. ! 1! 95.4 !
,,,,,,,,,, \ A A VIR
it i L . ;
1 make: XXX, | ! 3 ...-94.8 -
! model: AR, : T, TE Al ) \
| year: 2020, ! TEL 7i471 7777777777 ° 757'724‘
| zone: 3, Lo 5 95.3 " 1$ no temperoture event is
] temperature: 04.8 AV tocoocooooiocoooooooooooo received $rom zone 3 in the
30-minute window), this

temperature volue is an

estimoadion bosed on the

temperatures of zones &
and 4.

By changing from a continuous materialization to a window-based materialization, we
sacrifice the latency of temperature changes a little (temperatures are updated every 30
minutes instead of 10 minutes), but in return, we get a more robust system that can
detect and handle some unexpected issues automatically.
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Joining two tables instead of joining a stream
and table

Before wrapping up the chapter, as an example, let’s take a look at the option in which
both streams are converted to tables first and then the two tables are joined together
using the CO, emission monitor system. With this solution, the overall process in the
component has two steps: materialization and join. First, the two incoming streams are
materialized into two tables. Then, the join logic is applied on the tables, and the results
are emitted out to the downstream components. Usually, windowing is used in the
materialization step, and the join operation is very similar to the join clause in SQL data-
bases. Note that a different windowing strategy can be applied to each incoming stream.

. The vehicle events in a. The temperature events
vehicle event | the u)mci\ou;h ore a‘:ld‘ed Temperature | are moaterialized to the
source 0s rows In tne venicie event source | temperature table.
\ table.
\ 1
1
" \4
y
«
ffffffffffffffffffffffffffffff ,  zone | temperature |
, make | model |, year |, zone | bommmmm oo bommmmmmmmmm oo 1
beommoe PO P P . ! 1! 95.4 !
LOXXX ! AA ! 2020 ! 3! [ . .
oo P PO P | ! 2! 94.3
LYYy ! cc! 2013 1! [ . .
R P PR P ‘ ! 3! 95.0
LOXXX ! BB ! 2014 1! [ . .
beommon PR PR P . ! 4 95.2 !
L2727 EE | 2021 3! [ . .
e ! 5! 95.3
‘@t
T —

/

3. The join is triggered after the
¥ two tables are available. The
£mission results are then emitted to the
resolver downstream component.

Because the overall process is rather standard, developers can focus on the join calcula-
tion without worrying about handling streams differently. This could be an advantage
when building more complicated join operators; hence, this option is important to know.
On the other hand, the latency might not be ideal because the events are processed in
small batches instead of continuously. Remember that it is up to the developers to choose
the best option according to the requirements.
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Revisiting the materialized view

We have discussed that the temperature events !
are more efficient to be materialized than the
vehicle events, and we have also discussed that,
typically, the events in one special stream are

zone: 3

processed one by one, and the other streams are “ ' zone

| temperature |
materialized into temporary tables, but we can w 1 954l
also materialize all streams and join the tables. 2 s
I bet some curious readers will ask: can we join - oy T es.0
with the raw temperature events instead of the A i e
materialized view? o s sy

Let’s try to keep all the temperature eventsas ~ oooooeeeiiioioioo
a list and avoid the temporary table. To avoid
running out of memory, we will drop the temperature events that are older than 30 min-
utes. For each vehicle event, we need to search for the last temperature of the zone in the
temperature list by comparing the zone id in the vehicle event with the zone id of each
temperature in the list. The final results will be the same, but with a lookup table which
could be a hash map, a binary search tree, or a simple array with the zone id as the index,
the searching would be much more efficient. From the comparison, we can tell that the
materialized view can be considered an optimization. In fact, the materialized view is a
popular optimization pattern in many data processing applications.

The materialized view is a popular
pattern to optimize data processing

applications.

Since it is an optimization, we can be more creative about how to manage the events if
there are ways to make the operator more efficient. For example, in the real world a lot
more information, such as noise level and air quality, can be collected by these sensors.
Because we only care about the real-time temperature in each zone in this job, we can
drop all other information and only extract the temperature data from the events and
put them into the temporary lookup table. In your systems, if it makes your jobs more
efficient, you can also try to create multiple materialized views from a single stream or
create one materialized view from multiple streams to build more efficient systems.
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Summary

In this chapter, we discussed the other type of fan-in operator: join. Similar to merge
operators, join operators have multiple incoming streams. However, instead of applying
the same logic to all events from different streams, events from different streams are
handled differently in join operators.

Similar to the join clause in SQL databases, there are different types of joins.
Understanding the joins is important for solving the data integrity issue:

* Inner joins only return results that have matching values in both tables.

*  Outer joins return results whether or not there is matching data in both tables.
There are three types of outer joins: full outer joins (or full joins), left outer joins
(or left joins), and right outer joins (or right joins).

In the CO, emission monitoring system, the vehicle events are processed like a stream,
and the temperature events are used as a lookup table. A table is a materialized view of a
stream. At the end of the chapter, we also learned that windowing can be used together
with join and a different option to build join operators: materializing all the incoming
streams into tables and then joining them together.






Backpressure 9

In this chapter

« anintroduction to backpressure
« when backpressure is triggered

« how backpressure works in local and

distributed systems

‘ ‘ Never trust a computer you can’t throw out a window. ’ ,

—STEVE WOZNIAK

Be prepared for unexpected events is a critical rule when building any dis-
tributed systems, and streaming systems are not exceptions. In this chapter,
we are going to learn a widely supported failure handling mechanism in
streaming systems: backpressure. It is very useful for protecting a streaming
system from breaking down under some unusual scenarios.
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Reliability is critical

In chapter 4, the team built a stream processing system to process transactions and
detect credit card fraud. It works well, and customers are happy so far. However, the chief

has a concern—a very good one.
o @

-

-
-
~

~

Since Money is involved we have to be
super careful. Has anyone ever
considered the reliability of our sgs’cem?
whod will happen in unexpected seenarios,
such as o computer reboot?
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Review the system

Before moving forward, let’s review the structure of the system to refresh our memory.

-
-
-
-
-
~
~~ .
~

-

-
i

S. The presenter combines the
transaction $rom the apl
Sodreuoag and the $roud score

£rom the datab
\. 6P gokewoy 0SCepts tho rosrt £ o oo and presents
rronsockions and Sorwaxds esult to the paying bank.
ockion
requests o o trans (
A d o Sroud

Presenker on

deteckion job- v

© 000000000000000000000000000000000000000000000000

a. Transoaction source .

fans out a single transaction
transactionts - __— | source
multiple downstream PR
analyzer components.: - \/ IRETN :
averoge windowed windowed

ticket
analyzer

proximi’cb

anoluzer

score
aagregod:or .
3. .
ex:a.c‘:‘]qna{ljzer A
cu .
€s its own loqi reqotes
and createg 4 She 4. The score agoregotor a3ored
Score, o_total $roud score Sor each

roansaction ond writes the score to

the dotobose.
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Streamlining streaming jobs

The reason streaming systems are increasingly being used is the need for on-demand
data, and on-demand data can be unpredictable sometimes. Components in a streaming
system or a dependent external system, such as the score database in the diagram, might
not be able to handle the traffic, and they also might have their own issues occasionally.
Let’s look at a few potential issues that could arise in the fraud detection system.

The number of transactions
sw:ldenlg increase, ang the K
| transaction source mMay not be
The doko transfer m! ptbe  able to Keep up with i,
slowed down pecouse oF
network issuLs:

Y

A computer thot some
instances run on could have
hardware failure and
replaced with a. new one.

transoction
source

-1 ~J
~

“ y —a
averoge windowed windowed
ficket proximi’cﬂ +xn count

r ‘ analyzer analyzer anoluzer
S - 1 _ - -

mho¥fhe¥rwd = _ -

detection ‘malg?,ers score

could fall behind, in aggregoadtor \

running their function
or even cragh.

The score aggrega’cor
could take longer uoriting
transactions to the datobose.

After all, failure handling is an important topic in all dis- @ Noodle on it
tributed systems, and our fraud detection system is no
different. Things can go wrong, and some safety nets are What if instances fall

important for preventing problems from arising. behind or crash?
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New concepts: Capacity, utilization,
and headroom

Familiarize yourself with these related concepts, which will be helpful in discussing
backpressure:

Capacity is the maximum number of events an instance can handle. In the real
world, capacity is not that straightforward to measure; hence, CPU and memory
utilization are often used to estimate the number. Keep in mind that in a
streaming system, the number of events that various instances can handle could
be very different.

Capacity utilization is a ratio (in the form of a percentage) of the actual number
of events being processed to the capacity. Generally speaking, higher capacity
utilization means higher resource efficiency.

Capacity headroom is the opposite of capacity utilization—the ratio represents
the extra events an instance can handle on top of the current traffic. In most
cases, an instance with more headroom could be more resilient to unexpected
data or issues, but its efficiency is lower because more resources are allocated but
not fully used.

For example, it the maximum number of events this

instance can handle is 10,000 events per second. the

10,000 events per second. (or &PS) is the capacity of

the instance. Assuming the instance is processing

T,S00 events per second Curren’dg, the current

capacity utilization is 75% and the instance has a

heoadroom of as%.

Instance executor

Score
Instance executor regodror
Average 9
ticket
analyzer Instance executor
Score
aggrega’cor
Instance executor
Average
Yicket Instance executor
anodgzer Score

assrega’cor
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More about utilization and headroom

In real-world systems, something unexpected could occasionally happen, causing the
capacity utilization to spike. For example:

+ The incoming events could suddenly spike from time to time.

+ Hardware could fail, such as a computer restarting because of a power issue, and
the network performance might be poor when bandwidth is occupied by
something else.

It is important to take these potential issues into consideration when building distrib-
uted systems. A resilient job should be able to handle these temporary issues by itself. In
streaming systems, with enough headroom, the job should be running fine without any
user intervention.

However, headroom can’t be unlimited (plus, it is not free). When utilization capacity
reaches 100%, the instance becomes busy, and backpressure is the next front line.

The headroom o%
the instance

utilization

£ '
§-
The current capoi
g utilization “p l{}j
-+
(%)}
& fime
‘b:._
/

+ In a streaming job, the headroom could be different from one instance to
another. Generally speaking, the headroom of a component is the minimal
headroom of all the instances of the component; and the headroom of a job is
the minimal headroom of all the instances in the job. Ideally, the capacity
utilization of all the instances in a job should be at a similar level.

+ For critical systems, like the fraud detection system, it’s a good practice to
have enough headroom on every instance, so the job is more tolerant to
unexpected issues.
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New concept: Backpressure

When the capacity utilization reaches 100%, things
become more interesting. Let’s dive into it using the
fraud detection job as an example.

. Instances of the

Instance
executor

L]

Instance
executor

Instance
executor

[ ]

Instance
executor

[ ]

a. The events in the

\\\DD

~
R N
-7 ‘0

0
The dispa’ccher
moves events

between queues.

\
0.
0.

/000,
\\D

queues are waiting to
a:n'bdgzer-em'\’c- events - pe processed, i :

Instance
executor

L]
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nstance |

executor

nstance |

executor

L]

executor

L]

Instance

Instance
executor

score

aggresa’cor

e
2, A\ instonces o% khihs:o
regoecor process

events normalty e !

e \ast inskance is N S
iesues ond processiny a
events oX o \lower spee

S. Because the downstream
instance logs behind, the
intermediate queue backs up
with events to be processed.
Backpressure needs to kick in.

When the instance becomes busy and can’t catch up with the incoming traffic, its incom-
ing queue is going to grow and run out of memory eventually. The issue will then prop-
agate to other components, and the whole system is going to stop working. Backpressure

is the mechanism to protect the system from crashing.

Backpressure, by definition, is a pressure that is opposite to the data flowing direc-
tion—from downstream instances to upstream instances. It occurs when an instance
cannot process events at the speed of the incoming traffic, or, in other words, when the
capacity utilization reaches 100%. The goal of the backwards pressure is to slow down the
incoming traffic when the traffic is more than the system can handle.
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Measure capacity utilization

Backpressure should trigger when the capacity utilization reaches 100%, but capacity
and capacity utilization are not very easy to measure or estimate. There are many factors
that determine the limit of how many events an instance can handle, such as the resource,
the hardware, and the data. CPU and memory usage is useful but not very reliable for
reflecting capacity, either. We need a better way; luckily, there is one.

We have learned that a running streaming system is composed of processes and event
queues connecting them. The event queues are responsible for transferring events
between the instances, like the conveyor belts between workers in an assembly line.
When the capacity utilization of an instance reaches 100%, the processing speed can’t
catch up with the incoming traffic. As a result, the number of events in the incoming
queue of the instance starts to accumulate. Therefore, the length of the incoming queue
for an instance can be used to

detect whether the instance has Instance

reached its capacity. ,‘ executor
Normally, the length of the Instonce 0 )

queue should go up and down executor | N DD 0 )/

within a relatively stable range. ] TN ’ Instance

executor

RN
b 4
Instance PR
executor | -

L]

If it keeps growing, it is very
likely the instance has been too
busy to handle the traffic.

Instonce
executor

[ ]

After too many events are accumulated in the queue, o backpressure
event should happen 1o “slow down” events $rom the upstream
componen’cs.

In the next few pages, we will discuss backpressure in more detail with our local
Streamwork engine first to get some basic ideas, then we will move to more general dis-
tributed frameworks.

Note that backpressure is especially useful for the temporary issues, such as instances
restarting, maintenance of the dependent systems, and sudden spikes of events from
sources. The streaming system will handle them gracefully by temporarily slowing down
and resuming afterwards without user intervention. Therefore, it is very important to
understand what backpressure can and cannot do, so when system issues happen, you
have things under control without being panicky.
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Backpressure in the Streamwork engine

Let’s start from our own Streamwork engine first, since it is more straightforward. As a
local system, the Streamwork engine doesn’t have complicated logic for backpressure.
However, the information could be helpful for us to learn backpressure in real frame-
works next.

In the Streamwork engine, blocking queues (queues that can suspend the threads that
try to append more events when the queue is full or take elements when the queue is
empty) are used to connect processes. The lengths of the queues are not unlimited. There
is a maximum capacity for each queue, and the capacity is the key for backpressure.
When an instance can’t process events fast enough, the consuming rate of the queue in
front of it would be lower than the insertion rate. The queue will start to grow and
become full eventually. Afterward, the insertion will be blocked until an event is con-
sumed by the downstream instance. As the result, the insertion rate will be slowed down
to the same as the event processing speed of the downstream instance.

In the Streamuwork,
blocking queues with a.
specified capacﬂy are
used to connect processes.

Instance
executor
Instance [ ]
executor : e XOXY
] Instance L Th \osk mso’:\en
executor | | of e corp witn
Instance [ ] con'® \«eeP_n
executor xne 10eO™ 2
lj Instance / Ko};&\u
executor |
[ ]

a. @hen this queue is full, the incoming transactions will be blocked,
until the downstream instance consumes more elements $rom the

queue. Qs o result, the processing speed of the event dispatcher
process is slowed down +o the speed of the slow instance.

219



220

Chapter 9 | Backpressure

Backpressure in the Streamwork engine:
Propagation

Slowing down the event dispatcher isn’t the end of the story. After the event dispatcher is
slowed down, the same thing will happen to the queue between it and the upstream
instances. When this queue is full, all the instances of the upstream component will be
affected. In the diagram below, we need to zoom in a little more than normal to see the
blocking queue in front of the event dispatcher that is shared by all the upstream
instances.

1. when it is Sull, this queue will block the
incoming events $rom the upstream instances.

Instance
: ,‘ executor
3. The processing Instance 0 /) [ ]
speed of the »| executor 0.,/
upstream instances is [j ,/ Instance
slowed down as a A D_DJ:]_> executor
result. Instance [ ]
executor
l: Instance
executor
[ ]

When there is a fan-in in front of this component, which means there are multiple direct
upstream components for the downstream component, all these components will be
affected because the events are blocked to the same blocking queue.

| nstance Instance
when there are 5 executor executor
multiple upstream : ] [j
componen’cs, the
instances of all of Instonce Instonce
them will be slowed executor executor
down because all of ] ]
them emit events o
the same block.‘mg pi| Instance Instance
queue. ;|| executor executor
1| [ ]
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Our streaming job during a backpressure

Let’slook at how the fraud detection job is affected by backpressure with our Streamwork
engine when one score aggregator instance has trouble catching up with the incoming
traffic. At the beginning, only the score aggregator runs at a lower speed. Later, the
upstream analyzers will be slowed down because of the backpressure. Eventually, the
backpressure will bog down all your processing power, and you’ll be stuck with an
underperforming job until the issue goes away.

‘ransaction
source a. Since the score aggregod:or is
— falling behind, backpressure starts
-7y T to build between it and its
— il

immediote upstream componen’cs,
and the upstream components are
slowed down ot some point.
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prox'\mi’cg

transoction
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analyzer 2. 8Ven{:uod\5 backpressure will
spill over the anodg?,er
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source. The incoming dotolis
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Backpressure in distributed systems

Overall, it is fairly straightforward in a local system to detect and handle backpressure
with blocking queues. However, in distributed systems, things are more complicated.
Let’s discuss these potential complications in two steps:

1. Detecting busy instances

2. Backpressure state

Detecting busy instances

As the first step, it is important to detect busy instances, so the systems can react proac-
tively. We mentioned in chapter 2 that the event queue is a widely used data structure in
streaming systems to connect the processes. Although normally unbounded queues are
used, monitoring the size of the queues is a convenient way to tell whether an instance
can keep up with the incoming traffic. More specifically, there are at least two different
units of length we can use to set the threshold:

+  The number of events in the queue
+  The memory size of the events in the queue

When the number of events or the memory size reaches the threshold, there is likely an
issue with the connected instance. The engine declares a backpressure state.
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Backpressure state

After a backpressure state is declared, similar to the Streamwork engine, we would want
to slow down the incoming events. However, this task could often be much more com-
plicated in distributed systems than in local systems, because the instances could be
running on different computers or even different locations. Therefore, streaming frame-
works typically stop the incoming events instead of slowing them down to give the busy
instance room to breathe temporarily by:

+ Stopping the instances of the upstream components, or
+ Stopping the instances of the sources

Although much less popular, we would also like to cover another option later in this
chapter: dropping events. This option may sound undesirable, but it could be useful
when end-to-end latency is more critical and losing events is acceptable. Basically,
between the two options, there is a tradeoff between accuracy and latency.

The two options are explained in the diagram below. We’ve added a source instance
to help with explanations, and left out the details of some intermediate queues and event
dispatchers for brevity.

We can Stop the instances of the source or the
upstreom components, until the accumulated
events in the full queue are drained.
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Backpressure handling: Stopping the sources

Performing a stop at the source component is probably the most straightforward way to
relieve backpressure in distributed systems. It allows us to drain the incoming events to
the slow instance as well as all other instances in a streaming job, which could be desir-
able when it is likely that there are multiple busy instances.
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Backpressure handling: Stopping the upstream components

Stopping the incoming event could also be implemented at the component level. This
would be a more fine-grained way (to some extent) than the previous implementation.
The hope is that only specific components or instances are stopped instead of all of
them and that the backpressure can be relieved before it is propagated widely. If the
issue stays long enough, eventually the source component will still be stopped. Note
that this option can be relatively more complicated to implement in distributed sys-
tems and has higher overhead.
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Relieving backpressure

After a job is in a backpressure state for a while and the busy instance has recovered
(hopefully), the next important question is: what is the end of a backpressure state, so the
traffic can be resumed?

The solution shouldn’t be a surprise, as it is very similar to the detection step: moni-
toring the size of the queues. Opposite to the detection in which we check whether the
queue is too full, this time we check whether the queue is empty enough, which means the
number of events in it has decreased to be below a low threshold, and it has enough room
for new events now.

Note that relieving doesn’t mean the slow instance has recovered. Instead, it simply
means there is room in the queue for more events.
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Here, one important fact to keep in mind is that backpressure is a passive mechanism
designed for protecting the slow instance and the whole system from more serious prob-
lems (like crashing). It doesn’t really address any problem in the slow instance and make
it run faster. As a result, backpressure could be triggered again if the slow instance still
can’t catch up after the incoming events are resumed. We are going to take a closer look
at the thresholds for detecting and relieving backpressure first and then discuss the
problem afterward.
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New concept: Backpressure watermarks

The sizes of the intermediate queues are examined and compared with the thresholds for
the declaration and relieving of the backpressure state. Let’s take a closer look at these
two thresholds together with a new concept: backpressure watermarks. They are typically
the configurations provided by streaming frameworks:

+ Backpressure watermarks represent the high and low utilizations of the
intermediate queues between the processes.

+  When the size of the data in a queue is higher than the high backpressure
watermark, backpressure state should be declared if it hasn’t been already.

+ When a backpressure is present, and the size of the data in the queue that
triggered backpressure is lower than the low backpressure watermark, the
backpressure can be relieved. Note that it is not ideal for this low backpressure
watermark to be zero because that means the previously busy instance won’t
have work to do between the relieving of backpressure and new events reaching

the queue.

The data sizes in the queues go up and down when a job is processing events. Ideally, the
numbers are always between the low and high backpressure watermarks, so the events

are processed in full speed.
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Another approach to handle lagging
instances: Dropping events

Backpressure is useful for protecting systems and keeping things running. It works well
in most cases, but in some special cases you also have another option: simply dropping
events.

In this approach, when a lagging instance is detected, instead of stopping and resum-
ing the incoming events, the system would just discard the new events emitted into the
incoming queue of the instance.
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The option might sound scary because the results will be inaccurate. You are definitely
right about that. If you remember the delivery semantics we talked about in chapter 5,
you will notice that this option should only be used in the at-most-once cases.

However, it may not be as scary as it sounds. The results are inaccurate only when an
instance can’t catch up with the traffic, which should be rare if the system is configured
correctly. In other words, the results should be accurate almost all the time. We have
mentioned a few times that backpressure is a self-protection mechanism for the extreme
scenarios to prevent the systems from crashing. The backpressure state is not an ideal
state for streaming jobs. If it happens too often to your streaming job, you should take
another look at the system and try to find the root causes and address them.
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Why do we want to drop events?

Why would we ever want to throw away an event in a system? You are not alone if you are
wondering. Well, that’s a question to definitely ask yourself when designing your jobs:
are you willing to trade away accuracy for end-to-end latency in case any instance fails
to catch up with the work load?

Let’s take social media platforms as an example and track the number of user interac-
tions, such as likes, in real time. With the second option, the count is always the latest,
although it is not 100% accurate. In the case that 1 instance in 100 is affected, we can
expect the error to be less than 1%. If backpressure is applied to stop events, the count will
be accurate, but you won’t get the latest count during the backpressure state, because the
system is slowed down. After the backpressure state is relieved, it also needs time to catch
up to the latest events. In the case that the issue is permanent, you won’t have the latest
count until the issue is addressed, which could likely be worse than the < 1% error. Basically,
with the dropping events approach, you get a more real-
time system with likely accurate enough results.

Back to the fraud detection job—the dead-
line is critical to us. Pausing the data process-
ing for a few minutes and missing the
deadline until the backpressure is addressed
would not be acceptable to us. Comparatively
speaking, it may be more desirable to keep the
process going without delay, although the accuracy
is sacrificed slightly. Engineers should definitely be notified, so
the underlying issue is investigated and fixed as soon as possible. [
Monitoring the number of dropped events is critical for us to under- -
stand the current state and the accuracy level of the results.

gvent dropping isa
common design consideradion
when yowre balancing the tradeott
between aceuracy and overall
la’cencg.
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Backpressure could be a symptom when the
underlying issue is permanent

Backpressure is an important mechanism in streaming systems for handling temporary
issues, such as instance crashing and sudden spikes of the incoming traffic, to avoid
more serious problems. The streaming systems can resume a normal state automatically
after the underlying issue is gone without user intervention. In other words, with back-
pressure, the stream systems are more resilient to unexpected issues, which is generally
desirable in distributed systems. In theory, it would be ideal if backpressure never hap-
pened in a streaming system, but as you well know, life is not perfect, and it never will be.
Backpressure is a necessary safety net.

While we hope that the issue is temporary and backpressure can handle it for us, it all
depends on the underlying situation. It is totally possible that the instance won’t recover
by itself and owners’ interventions will be required to take care of the root cause. In these
cases, permanent backpressure becomes a symptom. Typically, there are two permanent
cases that should be treated differently:

+ The instance simply stops working, and backpressure will never be relieved,

+ The instance is still working, but it can’t catch up with the incoming traffic.
Backpressure will be triggered again soon after it is relieved.

Instance stops working, so backpressure won'’t be relieved

In this case, no events will be consumed from the queue, and the backpressure state will
never be relieved at all. This is relatively straightforward to handle: fixing the instance.
Restarting the instance could be an immediate remediation step, but it could be import-
ant to figure out the root cause and address accordingly. Often, the issue leads to bugs to
be fixed.

Instance can’t catch up, and backpressure will be triggered again

It is more interesting when an instance can’t
catch up with the traffic. In this case, the
data processing can resume temporarily
after the data in the queue has been
drained, but backpressure will be
declared again soon. Let’s take a closer
look at this case.

gackpressure is efficient for
’cempomrg issues but not for
Permcmen’c issues.
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Stopping and resuming may lead to
thrashing if the issue is permanent

Now, let’s take a look at an effect that we will term thrashing. If the underlying issue is
permanent, when the job declares a state of backpressure, the events in the queues are
drained by all instances; then, as soon as the backpressure state is relieved, as new data
events flood the instance once again, the state is declared again shortly. Thrashing is a
cycle of declaring and relieving backpressure.
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Thrashing is expected if the situation doesn’t change. If the same instance still can’t
catch up with the traffic, the data size in the queue will increase again until it reaches the
high watermark and triggers a backpressure again. And after the next time the backpres-
sure is relieved, it is likely to happen again. The number of events in the incoming queue
of the instance looks like the chart above. To recover from a thrashing, we need to find
the root cause and address it.
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Handle thrashing

If you see the thrashing, you will likely need to consider why the instance doesn’t process
fast enough. For example, is there an internal issue that makes the instance slow down,
or is it time to scale up your system? Typically, this kind of issue comes from two
sources—the traffic and the components:

+ The event traffic from the source might have increased permanently to a level
that is more than the job can handle. In this case, it is likely the job needs to be
scaled up to handle the new traffic. More specifically, the parallelisms (the
number of instances of a specific component—read chapter 3 for more details)
of the slow components in the job may need to be increased as the first step.

+ The processing speed of some components could be slower than before for some
reason. You might need to look into the components and see if there is something
to optimize or tune. Note that the dependencies used by the components should
be taken into consideration as well. It is not rare that some dependencies can run
slower when the pattern of traffic changes.

It is important to understand the data and the system

Backpressure occurs when an instance can’t process events at the speed of the incoming
traffic. It is a powerful mechanism to protect the system from crashing, but it is import-
ant for you, the owner of the systems, to understand the data and the systems and figure
out what causes backpressure to be triggered. Many issues might happen in real-world
systems, and we can’t cover all of them in this book. Nevertheless, we hope that under-
standing the basic concepts will be helpful for you to start your investigation in the right
direction.

Backpressure is important for the
sgs’cems to be more resilient, but it is
more important for us o understand
the root causes.
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Summary

In this chapter, we discussed a widely supported mechanism: backpressure. More
specifically:

+ When and why backpressure happens

+  How stream frameworks detect issues and handle them with backpressure

+ Stopping incoming traffic or dropping events—how they work and the tradeoffs
+  What we can do if the underlying issues don’t go away.

Backpressure is an important mechanism in stream systems. We hope and believe that
understanding the details about it could be helpful for you to maintain and improve
your systems.
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Stateful computation 1 o

In this chapter

« anintroduction to stateful and stateless components
« how stateful components work

« related techniques

‘ ‘ Have you tried turning it off and on again? ’ ’

—THE IT CROWD

We talked about state in chapter 5. In most computer programs, it is an
important concept. For example, the progress in a game, the current con-
tent in a text editor, the rows in a spreadsheet, and the opened pages in a
web browser are all states of the programs. When a program is closed and
opened again, we would like to recover to the desired state. In streaming
systems, handling states correctly is very important. In this chapter, we are
going to discuss in more detail how states are used and managed in stream-
ing systems.
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The migration of the streaming jobs

System maintenance is part of our day-to-day work with distributed systems. A few
examples are: releasing a new build with bug fixes and new features, upgrading software
or hardware to make the systems more secure or efficient, and handling software and
hardware failures to keep the systems running.

AJ and Sid have decided to migrate the streaming jobs to new and more efficient hard-
ware to reduce cost and improve reliability. This is a major maintenance task, and it is
important to proceed carefully.

Isit riskg to migra’ce the stream
jobs o the new machines? will the
results be affected during the
migration?

S

The results shouldn't be affected during
the migm’cion. Components are implemented as
stoteful components when needed. when the
instances are Killed on the old machines and
restarted on the new machines, ’ch95 will resume
1o their previous states automa’cicalla.
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Stateful components in the system usage job

Stateful components are very useful for the components that have internal data. We
talked about them briefly in chapter 5 in the context of the system usage job. It is time
take a closer look now and see how they really work internally.

We have discussed stateful components
briefly in previous chapters. They are

needed at a few places in our streaming job.

In order to resume the processing after a streaming job is restarted, each instance of a
component needs to persist its key internal data, the state, to external storage beforehand
as a checkpoint. After an instance is restarted, the data can be loaded back into memory
and used to set up the instance before resuming the process.

The data to persist varies from component to component. In the system usage job:

+ The transaction source needs to track the processing offsets. The offsets denote

the positions that the transaction source component is reading from the data
source (the event log).

The transaction counts are critical for the system usage analyzer and need to be

persisted.
+ The usage writer doesn’t have any data to save and el
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Therefore, the first two components need to be imple- , (Sobtrce
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Revisit: State

Before going deeper, let’s pause here and revisit a very basic concept: what is a state? As
we explained in chapter 5, state is the internal data inside each instance that changes
when events are processed. For example, the state of the transaction source component
is where each instance is loading from the data source (aka the offset). The offset moves
forward after new events are loaded. Let’s look at the state changes of a transaction source

instance before and after two transactions are processed.
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The states in different components

The states in different components

Things become interesting when we look at states in different components together. In
chapter 7 about windowed computation, we said that the processing time of an event is
different for different instances because the event flows from one instance to another.
Similarly, for the same event, in different instances, the state changes happen at different
times. Let’s look at the state changes of a transaction source instance and a system usage
analyzer instance together before and after two transactions are processed.

saction source

rrm
. instance
Timme

\ A\

System usoage
onalyzer instance

{
offset = 100

SO offset = 101

How can we make sure all
the instances persist states ot
the right times?

count = 1000

The initial states
before processing
events before
fransaction | and & are
processed.

Tronsockion | is emitted from the
transoction source instance ‘o
the usoge analyzer instance.

The state chounges after
transaction I ig received

and counted.

....................................... = 1001
‘{ : count 00 ‘\_/

Q
o
o
=1
=t
I
=
o
o
N

239



240

Chapter 10 | Stateful computation

State data vs. temporary data

So far, the definition of state is straightforward: the internal data inside an instance that
changes when events are processed. Well, the definition is true, but some state data could
be temporary and doesn’t need to be recovered when an instance is restored. Typically,
temporary data is not included in the state of an instance.

For example, caching is a popular technique to improve performance and/or effi-
ciency. Caching is the process of a component sitting in front of an expensive or slow
calculation (e.g., a complex function or a request to a remote system) and storing the
results, so the calculation doesn’t need to be executed repetitively. Normally, caches are
not considered to be instance state data, although they could change when events are
processed. After all, an instance should still work correctly with a brand new cache after
being restarted. The database connection in each usage writer instance is also temporary
data, since the connection will be set up again from scratch after the instance is restarted.

Another example is the transaction source component in the fraud detection job.
Internally, each instance has an offset of the last transaction event it has loaded from the
data source. However, like we have discussed in chapter 5, because latency is critical for
this job, it is more desirable to skip to the latest transaction instead of restoring to the
previous offset when an instance is restarted. The offset is temporary in this job, and it
should not be considered to be state data. Therefore, the component is a stateless compo-
nent instead of a stateful one.
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In conclusion, instance state includes only the key data, so the instance can be rolled
back to a previous point and continue working from there correctly. Temporary data is
typically not considered to be state data in stream systems.
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Stateful vs. stateless components: The code

The transaction source component exists in both the system usage job and the fraud
detection job, and it works in a similar way. The only difference is that it is stateful in the
system usage job and stateless in the fraud detection job. Let’s put their code together to
look at the changes in the stateful component:

+ The setupInstance() function has an extra state parameter.

« Thereisanew getState() function.

class TransactionSource extends StatefulSource/(\The sfodre&u VerSion in fhe
EventLog transactions = new EventLog(); S sfem us .
int offset = 0; \lj aﬁeJOb

public void setupInstance (int instance, State state) {

sourcestate mstate = (SourceState)state; The d&:\?&. in khe S‘hl‘te okgjeck i
if (mstate != null) { R
offset = mstate.offset; used to set UP the instance.

transactions.seek (offset) ;

}

public void getEvents (Event event, EventCollector eventCollector) {
Transaction transaction = transactions.pull();
eventCollector.add (new TransactionEvent (transaction)) ;
offset++;
system.out.println("Reading from offset %d", offset);

}

public State getState() {
SourceState state = new SourceState();
State.offset = offset;

} return new state; The state object 0% the instance
) contains the current dota oftset in
the event log.
T
class TransactionSource extends Source (‘/-\ he S‘{’q“.’eleSS version j
EventLog transactions = new EventLog|(); the ‘V"Qud det ] n
int offset = 0; echonJOb

public void setupInstance (int instance) {
offset = transactions.seek (LATEST) ;

}

public void getEvents (Event event, EventCollector eventCollector) {
Transaction transaction = transactions.pull();
eventCollector.add (new TransactionEvent (transaction)) ;

offset++;
system.out.println("Reading from offset %d", offset);
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The stateful source and operator in the
system usage job

In chapter 5, we have read the code of the TransactionSource and the
SystemUsageAnalyzer classes. Now, let’s put them together and compare. Overall,
the state handling is very similar between stateful sources and operators.

class TransactionSource extends StatefulSource {
MessageQueue queue;
int offset = 0;

public void setupInstance (int instance, State state) {

sourcestate mstate = (SourceState)state; The d&‘t&. in {he S‘t&,‘te ohjeck is
if (mstate != null) { R
offset = mstate.offset; used to set UP the instance.
log.seek (offset) ;

}

public void getEvents (Event event, EventCollector eventCollector) {

Transaction transaction = log.pull();
eventCollector.add (new TransactionEvent (transaction));
offset++;
) \L The ofSset value changes when a new

event is pulled Lrom the event log and

bli Stat tStat ) .
public state getstate() emitted to the downstream components.

SourceState state = new SourceState();
State.offset = offset;

return new state; The state object of the instance
) contains the current dota offset in
the event log.

class SystemUsageAnalyzer extends StatefulOperator ({
int transactionCount;

public void setupInstance (int instance, State state) {

AnalyzerState mstate = (AnalyzerState)state; ) R d
transactionCount = state.count; when an instance is constructed,

) g — o state object is used o initialize
the instance.

public void apply(Event event, EventCollector eventCollector) {
transactionCount++;

- The count variable chaunses when
events are processed.

eventCollector.add (transactionCount) ;
}

public State getState() {

AnalyzerState state = new AnalyzerState(); . .
o *
State.count = transactionCount; A new state o\g)ec’c is created to

return state; \ store instance dota. periodically.
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States and checkpoints
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Compared to stateless components we have seen before, two functions are added in
stateful components and need to be implemented by developers:

+ The getState() function, which translates the instance data to a state object.

+ The setupInstance() function, which uses a state object to reconstruct an

instance.

Now, let’s look at what really happens behind the scenes to connect the dots. This infor-
mation could be useful for you to build efficient and reliable jobs and investigate when

issues happen.

In chapter 5, we defined checkpoint as “a piece of data that can be used by an instance
to restore to a previous state.” The streaming engine, more specifically, the instance exec-
utor and the checkpoint manager (remember the single responsibility principle?), is
responsible for calling the two functions in the following two cases, respectively:

+ The getState() function is called periodically by the instance executor to get
the latest state of each instance, and the state object is then sent to the checkpoint
manager to create a checkpoint.

1. The instance executor Se’cs
fhe stote $rom the instonce.

a. The instonce executor

(_\ sends the state to the check.poink
manager to be persisted.

getState() saveState()
Instance )
Instance -~ o oior [ 2% Checkpoint™
4
nstonce ] -,
Instance I~ =P o ocmtor | ) checkpoint
Instance /I
Instance I~ = = ¥ executor

+ ThesetupInstance() functionis called by the instance executor after the instance
is created, and the most recent checkpoint is loaded by the checkpoint manager.

I. The instance
executor loads the
stote from the
checkpoint manager,
which searches and
loods checKpoin’c data
in the storage.

loadState()

3. The instance executor uses the
state object 1o set up the instance.

setupInstance()
Instance
- - - - — 1 Instance
executor
\
\
N Instance
\ - - — 1 Instance
\ executor
\
‘T Instonce
- - — 1 Instance
executor
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Checkpoint creation: Timing is hard

The instance executors are responsible for calling the instances’ getState () function
to get the current states and then sending them to the checkpoint manager to be saved
in the checkpoint. An open question is how the instance executors know the right time
to trigger the process.

An intuitive answer might be triggering by clock time. All instance executors trigger the
function at exactly the same time. A snapshot of the whole system can be taken just like
when we put a computer into hibernation mode in which everything in memory is dumped
to disk, and the data is reloaded back into memory when the computer is woken up.

However, in streaming systems this technique doesn’t work. When a checkpoint cre-
ation is started, some events have been processed by some components but not processed
by the downstream components yet. If a checkpoint is created this way and used to
reconstruct instances, the states of different instances would be out of sync, and the
results will be incorrect afterwards.

fronsaction
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For example, in a working streaming job, each event is processed by an instance of the
source component (the transaction source in the system usage job), and then sent to the
right instance of the downstream component (the system usage analyzer in the system
usage job). The process repeats until there is no downstream component left. Therefore,
each event is processed at a different time in different components, and at the same time,
different components are working on different events.

To avoid the out-of-sync issue and keep the results correct, instead of dumping states
at the same clock time, the key is for all the instances to dump their states at the same
event-based time: right after the same transaction is processed.
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Event-based timing

For checkpointing in streaming systems, time is measured by event id instead of clock
time. For example, in the system usage job, the transaction source would be at the time
of transaction #1001 when transaction #1001 has just been processed by it and emitted
out. The system usage analyzer would be at the time of after transaction #1000 at the
same moment and reaches the time of transaction #1001 after transaction #1001 is
received, processed, and emitted out. The diagram below shows the clock time and the
event-based time in the same place. To keep things simple, we are assuming that each
component has only one instance. The multiple instance case will be covered later when
we discuss the implementation.

Clock Transaction source System usage
time instonce analyzer instance
{ {
offset = 100 count = 1000

Transoction #1000 is  Transaction #1000
looded into the job.  is processed by

l transaction source Transaction #1000
‘ . .
% ~. instance. is processed b5 the
\ A {
\ offset = 101 ‘._/ S5S*em usage majgzer
\\ } - instance.
\ S~ ~
L eesseecsseees - |
‘( count = 1001

offset = 102 .
} event-based time:

~< ‘“'””“”“4_’«ansacﬁon#|ooo

e 0000000000 00 -

= 1002

Q

o

e

=)

=4
I

Transaction #100! is Ty

loaded into the job. gvent-based time:

transaction #100I

.-‘-............o4_.

With this event-based timing, all instances can dump their states at the same time to
create a valid checkpoint.
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Creating checkpoints with checkpoint events

So how is event-based timing implemented in streaming frameworks? Like events, the
timing is built in a streaming context we have been talking about throughout this book.
Sound interesting?

Event-based timing sounds straightforward overall, but there is a problem: typically,
there are multiple instances created for each component, and each event is processed by
one of them. How are the instances synchronized with each other? Here, we would like
to introduce a new type of events, control events, which have a different routing strategy
than the data events.

So far, all our streaming jobs have been processing data events, such as vehicle events
and credit card transactions. Control events don’t contain data to process. Instead, they
contain data for all modules in a streaming job to communicate with each other. In the
checkpoint case, we need a checkpoint event with the responsibility of notifying all the
instances in a streaming job that it is time to create a checkpoint. There could be other
types of control events, but the checkpoint event is the only one in this book.

Periodically, the checkpoint manager in the job issues a checkpoint event with a
unique id and emits it to the source component, or more accurately, the instance execu-
tors of the instances of the source component. The instance executors then insert the
checkpoint event into the stream of regular data events, and the journey of the check-
point event starts.

.l. The checkpoint m,
IS responsible for
enerati _
eQKPOinf SVenf 0:22 ‘a Ched.ﬁpomf
event in o while,

anoger

o enent™ transaction

X
o source

4%086 a. The chec\ﬁpo‘m’c event
— will be inserted into the
= event stream \o5 ’ches;

usoge instance execurors o -
writer the source component:

Note that the instances of the source component that contain user logic don’t know the
existence of the checkpoint event. All they know is that the getState() function is
invoked by the instance executor to extract the current states.
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A checkpoint event is handled by instance

executors

Each instance executor repeats the same process:

+ Invoking the getState() function and sending the state to the checkpoint

manager

+ Inserting the checkpoint event into its outgoing stream

If you look at the diagram below closely, you will find that each checkpoint event also
contains a checkpoint id. The checkpoint id can be considered an event-based time.
When an instance executor sends the state object to the checkpoint manager, the id is
included, so the checkpoint manager knows that the instance is in this state at this time.

The id is included in the checkpoint object, as well, for the same purpose.
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A checkpoint event flowing through a job

After the checkpoint event is inserted into the event stream by the source instance exec-
utors, it is going to flow through the job and visit the instance executors of all the oper-
ators in the job. The two diagrams below show that the checkpoint event with id 1 is
processed by the transaction source and the system usage analyzer components one
after the other.

The last component, usage writer, doesn’t have a state, so it notifies the checkpoint
manager that the event has been processed without a state object. The checkpoint man-
ager then knows that the checkpoint event has visited all the components in the job, and
the checkpoint is finally completed and can be persisted to storage.

T
 —

y
transaction
source
(<> |
=y
system
usage
anI:a]ltr)\zer The system usage %;
1
y anabzer ¢omponent sendg transaction
usage the instance states 1o source
writer the checkpoint manager !
and inserts (emi{rs) the Iy
.checlﬁpoinf event into system
its oufgoing stream. usoge
‘ cmod?zer
]
The usage writer component doesnt us* ”
have an internal stote. It will notity __—» wr{':cger

the checl-spoin’c manager when the
checKpoin’c event is processed.

Overall, the checkpoint event flows through the job similarly to a regular event but not
in exactly the same way. Let’s look one level deeper.
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Creating checkpoints with checkpoint events

at the instance level

The checkpoint event flows from component

—t
to component. State objects are sent to the =y
checkpoint manager one by one by the transaction
instance executors when the checkpoint source
event is received. As a result, all the states are :
created between the same two events (200  30C3¥
and 201) for every single component in the system
example shown here. usage
L_analuzer
| remember there could
be multiple instances for each a00y
component? will it still work usage
. . correc’dg? writer
- n

One thing we shouldn’t forget is that there

could be multiple instances for each compo-

nent. We learned in chapter 4 that each event is routed to a specific

instance based on a grouping strategy. The checkpoint event is routed

quite differently; let’s take a look. (Note that this page and the next

might be a little too detailed for some readers. If you have this feeling,
please feel free to skip them and jump to the checkpoint loading topic.)

The simple answer is that all the instances need to receive the checkpoint event to
trigger the getState() call correctly. In our Streamwork framework, the event dis-
patcher is responsible for synchroni-
zing and dispatching the checkpoint

(SAS

event. Let’s start with the dispatch- o instance
S . oo Only on vent. Instance
ing first (since it is simpler) and es knis doXo. @ 4
. recel \ ;| executor
talk about the synchronizing in
the next page. ;| Instance . D// L]
When an event dispatcher executor | 7 \D[] u
. . : ] . Instance
receives a checkpoint event from
. . \ n 100 L, | executor
the upstream component, it will x \
emit one copy of the event to each Instance ﬂ L]
instance of the downstream com- executor ——
. n
ponent. For comparison, for a data [ ] oxecutor
event, typically only one instance every instance receives
of the downstream component a copy of this L

will receive it. checkpoint event.
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Checkpoint event synchronization
While the checkpoint event dispatch- The checkpoint events arrive at diffe
ing is fairly straightforward, the syn- times and need to be synchronized, rent
chronization part is a little trickier. —:-ooooeoooorreee b :
Checkpoint event synchronization is : Instance
the process for the event dispatcher to executor
receive the incoming checkpoint : | Instance ]
events. Each event dispatcher receives : | €xecutor
events from multiple instances (in : L] Instance
fact, it could also receive events from : executor
instances of multiple components), so : | Instance [ ]
one checkpoint event is expected : | executor |- /\ Rl
from each upstream instance execu- : | | ] . 30! v | Instance
tor. These checkpoint events rarely Joko eNen® §| executor
arrive at the same time like in the : [ ]

example in the diagram shown here.
So what should it do in this case?

If we look at the diagram above and take the event-based timing into consideration,
the time that the checkpoint event #1 represents is between data events #200 and #201. A
checkpoint event is received by all the instance executors, so it is possible that the check-
point event is processed by one instance earlier than the others like in the diagram
above. In this case, after receiving the first checkpoint event, the event dispatcher will
block the event stream that the checkpoint event came from, until the checkpoint event
is received from all the other incoming connections. In other words, the checkpoint
event is treated like a barrier, or a blocker. In the example above, the checkpoint event
arrives from the bottom connection first. The event dispatcher will block the process of
data event #201 and keep processing events (the data events #200 and the one before it)
from the upper incoming connection until the checkpoint event is received.

After the checkpoint event #1 is 00
. . Jenk: &

received from both connections, doXo- €
since there are no other incoming : \ nstonce |
connections to wait for, the event 0 A executor |

. . . . i/
dispatcher emits the checkpoint : oo n/ ]
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. : executor | ~( ] ,
instance executors and starts con- : lj N \D P Instonce
suming data events. As a result, N ,’[]n_ | executor
data event #200 is dispatched : > P

. : Instance -

before checkpoint event #1 and : e ‘u
dat t #201 by th t executor | < N

‘a a even Yy ¢ even l:‘ data event: 301 U Instance
dispatcher. 3| executor
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Checkpoint loading and backward
compatibility

Now that we have discussed how checkpoints are created, let’s take a look at how check-
points are loaded and used. Unlike the creation process, which happens repetitively,
checkpoint loading happens only once in each life cycle of a stream job: at the start time.

When a streaming job is started (e.g., something has happened, like an instance has
just crashed, and the job needs to be restarted on the same machines; the job instances
moved to different machines like the migration AJ and Sid are working on), each instance
executor requests the state data for the corresponding instance from the checkpoint
manager. The checkpoint manager in turn accesses the checkpoint storage, looks for the
latest checkpoint, and returns the data to the instance executors. Each instance executor
then uses the received state data to set up the instance. After all the instances are con-
structed successfully, the stream job starts processing events.

loadState() setupInstance()

Instance
- — — 1  Instance

W executor

‘o y] Instance
\ executor

' Instance
- — — 1 Instance
executor

- — — 1 Instance

The whole process is fairly straightforward, but there is a catch: backward compatibility.
The checkpoint was created in the previous run of the job, and the state data in the
checkpoint is used to construct the new instances. If the job is simply restarted (manu-
ally or automatically), there shouldn’t be any problem, as the logic of the instances is the
same as before. However, if the logic of the existing stateful components has changed, it
is important for developers to make sure that the new implementation works with the
old checkpoints, so the instances’ states can be restored correctly. If this requirement is
not met, the job might start from a bad state, or it might stop working.

Some streaming frameworks manage the checkpoints between deployments as a spe-
cial type of checkpoints: savepoints. These savepoints are similar to regular checkpoints,
but they are triggered manually, and developers have more control. This can be a factor
to consider when developers choose streaming frameworks for their systems.
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Checkpoint storage

The last topic related to checkpoints is storage. Checkpoints are typically created period-
ically with a monotonically increasing checkpoint id, and this engine-managed process
continues until the streaming job is stopped.

Time

- . 3 e
ANANA _———- oint creoions o
DBARAMEA -~ coomtomioner,

J«'\agered Per'\od\c&“
the process continues
Sorever.

When instances are restarted, only the most recent
checkpoint is used to initialize them. In theory, we
can keep only one checkpoint for a stream job and ¢ Checkpointyy o _ ]
update it in place when a new one is created.
However, life is full of ups and downs. For exam-

loadState()

Instance
executor

Sy Instance

ple, the checkpoint creation can fail if some ' executor
instances are lost and the checkpoint is not com- ‘M ctenes
pleted, or the checkpoint data can be corrupted exeoutor
because of disk failures and can’t be loaded. In

order to make the streaming systems more reliable,

typically the most recent N checkpoints are kept in the storage and the older checkpoints
can be dropped and the N is typically configurable. In case the most recent checkpoint
is not usable, the checkpoint manager will fall back to the second latest checkpoint and
try to use it to restore the streaming job. The fall back can happen again if needed until
a good one is loaded successfully.
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Stateful vs. stateless components

We have read enough about the details of stateful components and checkpoints. It is
time to take a break, look at the bigger picture, and think about the pros and cons of
stateful components. After all, stateful components are not free. The real question is:
should I use stateful components or not?

The fact is that only you, the developer, have the final answer. Different systems have
different requirements. Even though some systems have similar functionality, they may
run totally differently because the incoming event traffic has different patterns, such as
the throughput, data size, cardinality, and so on. We hope that the brief comparison
below can be helpful for you to make better decisions and build better systems. In the
rest of this chapter, we are going to talk about two practical techniques to support some
useful features of stateful components with stateless components.

Stateful component Stateless component
Accuracy - Stateful computation is - There is no accuracy guarantee
important for the exactly-once because instance states are not
semantic, which guarantees managed by the framework.

accuracy (effectively).

Latency (when Instances will roll back to the « Instances will keep working on

errors happen) previous state after errors the new events after errors
happen. happen.

Resource usage |+ More resources are neededto |« No resource is needed to
manage instance states. manage instance states.

Maintenance + There are more processes « There is no extra maintenance

burden (e.g., checkpoint manager, burden.

checkpoint storage) to main-
tain and backward compat-

ibility is critical.
Throughput « Throughput could drop if « There is no overhead to handle
checkpoint management is high throughput.
not well tuned.
Code « Instance state managementis |+ There is no extra logic.
needed.
Dependency  Checkpoint storage is needed. |« There is no external dependency.

We use stateful components only when they are
necessary. We do this to keep the job as simple as

possible to reduce the burden of maintenance.
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Manually managed instance states

From the comparison, it is clear that accuracy is the advantage of stateful components.
When something happens, and some instances need to be restarted, streaming engines
help to manage and rollback the instance states. In addition to the burden, the engine-
managed states also have some limitations. One obvious limitation is that
the checkpoint shouldn’t be created too fre-

quently because the extra burden would be
higher, and the system would become less
efficient. Furthermore, it could be more
desirable for some components to have
different intervals, which is not feasible
with engine-managed states. Therefore,
sometimes, it is a valid option to consider is
managing instance states manually. Let’s use the C 9
system usage job as an example to study how it works.

The diagram below shows the system usage job with a state storage hooked up. Different
instances store their states in the storage independently. Like we discussed earlier, absolute
time won'’t really work because different instances are working on different events. And
since we are managing states manually, now we don’t have the checkpoint events to pro-
vide event-based timing. What should we do to synchronize different instances?

The key is to have something in common that can be used by all components and
instances to sync up with each other. One solution is to use transaction id. For example,
transaction source instances store offsets, and system usage analyzer instances store trans-
action ids and current counts in the storage every minute. When the job is restarted,
transaction source instances load the offset from storage, and then they go back a little

(a number of events or a few minutes back)
and restart from there. The system usage
analyzer instances load the most recent

transaction ids and counts from the storage.

fAre there any other options to
manage stote?

. . y
Afterwards, the analyzer instances can skip -
. . . . transaction
the incoming events until the transaction -
S source
ids in the states are found and then the reg- ] ’
. . 4
ular counting can be resumed. In this solu- ; y
tion, transaction source and system usage System )
analyzers can manage their instance states usage ,’stote storage contains
in different ways because the two compo- analuzer o¥Ssets from transaction
nents are not tightly coupled by the check- ? source, fransaction ids and
point ids anymore. As a result, the overhead v counts $rom system usage
could be lower, and we also get more flexi- usoge analyzer. The two Kind of
bility, which could be important for some writer dota. con be stored with

real-world use cases. different schedules.



Lambda architecture

Lambda architecture

Another popular and interesting technique is called lambda architecture. The name
sounds fancy, but take it easy; it is not that complicated.

To understand this technique, we will need to recall a concept from chapter 1 about
the comparison of batch and stream processing systems. While streaming processing
systems can generate results in real time, batch processing systems are normally more
failure tolerant because if things go wrong, it is easy to drop all the temporary data and
reprocess the event batch from the beginning. In consequence, the final results are
accurate because each event is calculated exactly once toward the final results. Also,
because batch processing systems can be more efficient to process a huge number of
events, in some cases more complicated calculations that are hard to do in real time can
be applied.

The idea of lambda architecture is rather simple: running a streaming job and a
batch job in parallel on the same event data. In this architecture, the streaming job is
responsible for generating the real-time results that are mostly accurate but provides no
guarantee when bad things happen; the batch job, on the other hand, is responsible for
generating accurate results with higher latency.

The streaming job is responsible for generating
real-time results without accuracy Suaramtee.

Stream
process
~ Job

\ Bateh
R\ process
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The batch job is responsible for generating
accurate results with higher latency.

With lambda architecture, there will be two systems to build and maintain, and the
presentation of the two sets of results can be more complicated. However, the accuracy
requirement of the streaming job can be much less strict, and the streaming job can
focus on what it is designed for and good at: processing events in real time.
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Summary

In this chapter, we revisited the instance state and took a closer look. Then, we dived into
more details of how instance states and checkpoints are managed in streaming jobs,
including:

+  Checkpoint creation via checkpoint events
+  Checkpoint loading and the backward compatibility issue
+ Checkpoint storage

After briefly comparing stateful and stateless components, we also learned two popular
techniques that can be used to archive some benefits of stateful components without the
burdens:

* Manually managed instance states

« Lambda architecture
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Exercises

1. If the system usage job is converted into a stateless job, what are the pros and
cons? Can you improve it by manually managing the instance states? And what
would happen if a hardware failure occurred and the instances were restarted on
different machines?

2. The fraud detection job is optimized for real-time processing because of the
latency requirement. What are the tradeoffs, and how can it be improved with
lambda architecture?






Wrap-up: Advanced concepts ‘ 1 1
in streaming systems

In this chapter

reviewing the more complex topics in

streaming systems

understanding where to go from here

‘ ‘ It’s not whether you get knocked down:; it’s whether ’ ’
you get up.

—VINCE LOMBARDI
You did it! You have reached the end of part two of this book, and we have

discussed quite a few topics in more detail. Let’s review them quickly to
strengthen your memory.
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Is this really the end?

Well, we authors think it’s safe to say this is the end of the book, but you can count on
having many more years of learning and experimenting in front of you. As we sit and
write this chapter, we’re reflecting on the long journey of learning. What an adventure it
has been for us! Hopefully, after reading this book, you feel that you benefited from it—
we certainly have.

What you will get from this chapter

There have been many complex topics covered in the second half of the book. We’d like
to recap the main points. You may not need to know all of these topics in depth in the
beginning of your career, but knowing them will help you establish yourself in the upper
echelon of technologists in the field when it comes to real-time systems. After all, learn-
ing these topics well is not a trivial task.
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Windowed computations

We learned that not all streaming jobs want to handle events one at a time. It can be
useful to group events together in some cases, whether that is time- or count-related.

gefore, we had been processing each element ’\ndividual\a.

\"h._
time
In chapter 7, we learned how to process events in groups
divided \o3 windows.
window | | window a | window 3 I
I
! |
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Y a time period or number
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The major window types

Creating or defining a window is entirely up to the developer. We showed three different
base window types, using the fraud detection job as an example. Note that time-based
windows are used in the diagrams below.

Fixed Windows

00:12 | card no: ...1234 A . .
ISt | min window:
00:49 | card no: ....6789
— : 00:00-00:59
00:55 | card no: ..1212 *X” even khoush each
01:10 | card no: 6789 : Andl min wind window time interval is
. : ‘ na | min window:
01:26 | cardno: 2345 ~— . 00-0155 the same, the number of
. d no: : -0l -
0137 | cardno 1212 : events per window
01:42 | card no: ..1212 ! ) ) vories.
0222 | cardno: 7865 A 3rd | min window:
<+
02:38 | card no: ..4433 v 03:00-0a:59
Sliding Windows Y
: 00:12 | card no: ..1234
Ist window -/'—gx --
With sliding windows, you A 0049 | card no: ..6789
s'\mplg keep a rol\'ms y 00:55 | card no: 1212
context of dato. to and window _/VA 01:10 | card no: ...6789
reference and decide ! 0126 | cardno: 2345
\¥ on event S\'\Ould be 3rd w-\ndow _/VA 01:37 | card no: ..1212
marked as $roudulent. i
01:42 | card no: ..1212
44h window —/"‘ 0222 | cardno: ..7865
Sth window _/V! 02:38 | card no: ..4433

Session windows are *5P‘°°‘“5 Keg—

specific. In this example, the key is the
credit card number. Thus, each card
has its own unique window.
: 01:37 I
| on42
H I ..... I
| Session windows are defined b5 o mox
| e duration of timeout length. 1$a 9op in
 ereea £ time exceeds the timeout length, an
I NTT= : existing window is closed ond a. new

one is opened,
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Joining data in real time
In chapter 8, we covered joining data in real time. In this scenario, we had two different
types of events being emitted from the same geographic region. We needed to decide how
to join events that are in two different event types and coming at different intervals.
. 0 XY 7l RS
% & Z" w & LooKmS'a’c the same poart P’k‘ﬂ \4; S J :‘&, P;)E’
= of the city, we can see the Wl r OEON Y m..
" e V
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N X WY T occur in each grid of the
% > | S / );r] map. Correlating different
\ . events in the same grid can
b,g N o /9 T‘ present its own challenges
/(‘ % & in real-time systems.
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\
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X
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Most of us are familiar (enough) with the join clause in SQL. In streaming systems, it is sim-
ilar but not quite the same. In one typical solution, one incoming stream works like a stream,
and the other stream is (or streams are) converted into a temporary in-memory table and
used as reference data. The table can be considered to be a materialized view of a stream.
There are two things to remember:

1. Stream join is another type of fan-in.

2. A stream can be materialized into a table continuously or using a window.
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Inner joins vs. outer joins

Like the join clause in SQL, there are four types of joins in streaming systems as well.
You need to choose the right one for your own use case.

Inner joins only return results thot Full outer joins return all results
have madching values in both in both tables.
tables.

vehicle

events

Le®t outer joins return all results Right outer joins return all results
in the vehicle events table and in the temperature table and
only madching rows from the only madching rows from the
temperature toble. vehicle events toble.

vehicle

events
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Unexpected things can happen in streaming
systems
Building reliable distributed systems is challenging and interesting. In chapter 9, we

explored common issues that can occur in streaming systems and cause some instances to
lag behind, as well as a widely supported technique for temporary issues: backpressure.

The upstream The events in the queues are
instonces emit waiting o be processed by
events. the downstream instances.

Instance All instances of the
executor | ©  score agoregator

Instance [ ] | process the events
executor | M\ DD . normod\g, except the
[:] N Instance | :  lastinstance is having
b executor | | issues and processing
Instance - o <>\ ] events at a lower
executor | - 0 y
[:] Instance
executor |«

After a period of time ... [ Instance |
executor
Instance [ ]
executor
] Instance |
executor
Instance l:]
executor
l:] Instance
executor
[ ]

Because the downstream instance lags behind, the intermediate
queue backs up with events to be processed. eventually, when
the queue becomes full, the system might become unstable.
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Backpressure: Slow down sources
or upstream components

Backpressure is a force opposite to the data flow direction that slows down the event
traffic. Two methods we covered for addressing backpressure were stopping the sources
and stopping the upstream components.

Stopping the sources

l. We coan {:emporourila stop the
source $rom emitting any

additional 4ransactions into the \ transaction

Job by sending a. special message source

to all the instances of the source — ~

component. - v S~ .
averoge windowed windowed

ficket

3. With the source temporarily L_analyzer
stopped, all components will be /‘ b
able to finish processing all
transactions traversing the job
and then the source can be
resumed.

prox‘\m'\’cﬂ

analyzer

aggresa’cor

Stopping the upstream components
transaction

source

At the component level, we would stop
all three of the analyzer components -~ ¥ ~ <.
from taking new events from the
source and emitting results to the
score aggrega’cor componen’c
kemporarilg. The score aggrego@cor

will be able to finish processing the /
pend‘mg events and the omodgzers
will be resumed.

windowed

proxim'\’cg

averoge
ticket

aggrega’cor
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Another approach to handle lagging instances:
Dropping events

In this approach, when an instance is lagging behind, instead of stopping and resuming
the processing of the source or the upstream components, the system will just throw
away the new events being routed to the instance.

Instance
, | executor

Instance 0. [ ]
executor | N \DD n./
[:] AN // Instance
A a DDJ]_, executor
Instance P ol [ ]
executor h
[:] Instance
executor

L]

¥ the queue is py,
emitted to thig que
be dropped,

nNew eventg
ue will SiMP[lj

It is certainly reasonable to be cautious when choosing this option, as the events will be
lost. However, it may not be as scary as it sounds. The results are not accurate only when
backpressure is happening, which should be rare in theory. So, they should still be accu-
rate almost all the time. On the other side, dropping events could be desirable in the cases
in which end-to-end latency is more important than accuracy. Don’t forget that drop-
ping events is much more lightweight than pausing and resuming the event processing.
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Backpressure can be a symptom when the
underlying issue is permanent

We have mentioned a few times that backpressure is a self-protection mechanism for
avoiding more serious issues in extreme scenarios. While we hope that the issue that
causes some instances to lag behind is temporary and backpressure can handle it auto-
matically, it is possible that the instance won’t recover and the owner’s interventions will
be required to take care of the root cause. In these cases, permanent backpressure is a
symptom, and developers need to address the root causes.

The instance stops working, so backpressure won't be relieved

In this case, no events will be consumed from the queue, and the backpressure state will
never be relieved at all. This is relatively straightforward to handle: by fixing the instance.
Restarting the instance could be an immediate remediation step, but it could be import-
ant to figure out the root cause and address it accordingly. Often, the issue leads to bugs
that need to be fixed.

The instance can’t catch up, and backpressure will be triggered again:
Thrashing

If you see the thrashing, you will likely need to consider why the instance doesn’t process
quickly enough. Typically, this kind of issue comes from two causes: the traffic and the
components. If the traffic has increased or the pattern has changed, it could be necessary
to tune or scale up the system. If the instance runs slower, you will need to figure out the
root cause. Note that it is important to take the dependencies into consideration as well.
After all, it is important for you, the owner of the systems, to understand the data and
the systems and figure out what is causing the backpressure to be triggered.
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Stateful components with checkpoints

In chapter 10, we learned how we could stop and start a streaming job without losing
data. Stateful components allow for the recreation of a context, so the components
resume the processing from the state where it stopped previously. In our specific case,
AJ and Miranda needed a way to stop and restart the system usage job on new machines

transparently.

A checkpoint, a piece of data that can be used by an instance to restore to a previous
state, is the key for persisting and restoring instance states.

+ The getState() function is called periodically by the instance executor to get
the latest state of each instance, and the state object is then sent to the checkpoint
manager to create a checkpoint.

1. Instonce exe
£rom the instance.

cutor gets stote

a. Instance executor sendg
state to the checkpoin’c

manager to be persisted,

getState() saveState()
Instance
Instance == oocutor [T
4
Instance d ,'
Instance | — — P executor 4 /I checkpoink
/
Instance |/
Instance |- = = ¥ executor

+ The setupInstance() function is called by the instance executor after the
instance is created, and the most recent checkpoint is loaded by the checkpoint

manager.

l. Instance executor
loads state $rom the
checlﬁpoin{t manager
which searches and
loads checkpoint dota
in the skorage.

loadState()

a. Instance executor uses the state
object o set up the instance.

setuplInstance() <>

Instance
- - — >4 Instance
executor
3 Instance
- — — >4 Instance
executor
\
Instance
- — — 1  Instance
executor
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Event-based timing

Every instance in a streaming job needs to get
its state at the same time, so a job can be
restored to a previous time when needed.
However, the time here isn’t the clock time.
Instead, it needs to be event-based time.

The checkpoint manager is responsible for
generating a checkpoint event periodically
and emitting it to all the source instances.
The event then flows through the whole job
to notify each instance that it is time to send
the internal state to the checkpoint manager.
Note that, unlike the regular data events,
which are routed to one instance of a down-
stream component, the checkpoint event is
routed to all the instances of a downstream
component.

At the instance level, each event dispatcher
connects to multiple upstream instances and
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source

multiple downstream instances. The incoming checkpoint events of the event dispatcher
may not arrive at the same time, and they need to be synchronized before sending out to

the downstream instances.
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Stateful vs. stateless components

As a creator or maintainer of streaming jobs, you will need to decide when to use a state-
less or a stateful component. This is where you will need to go with your gut instinct or
collaborate with a team to make this decision. It is not clear-cut when to use a stateful or
stateless component in every scenario, so in times like these, you really become the art-
ist. The following table compares several aspects of stateful and stateless components.

Stateful component Stateless component
Accuracy - Stateful computation is - There is no accuracy guarantee
important for the exactly-once because instance states are not
semantic, which guarantees managed by the framework.

accuracy (effectively).

Latency (when « Instances will roll back to the « Instances will keep working on

errors happen) previous state after errors the new events after errors
happen. happen.

Resource usage |- More resources are needed to |« No resource is needed to
manage instance states. manage instance states.

Maintenance « There are more processes - There is no extra maintenance

burden (e.g., checkpoint manager, burden.

checkpoint storage) to
maintain, and backward
compatibility is critical.

Throughput « Throughput could drop if « There is no overhead to handle
checkpoint management is high throughput.
not well tuned.

Code « Instance state management « There is no extra logic.
is needed.

Dependency « Checkpoint storage is needed. |+ Thereis no external dependency.

Stateful components are fantastic in terms of adding reliability to a streaming job, but
remember to keep things simple at first. As soon as you introduce state into your stream-
ing jobs, the complexity of planning, debugging, diagnosing, and predicting could make
them much more cumbersome. Make sure you understand the cost before making each
decision.



You did it!

You did it!

Pat yourself on the back; that was a lot of material to cover. You have made it through
about 300 pages of how streaming systems work! So, what’s next? Well, you can start
working hard to increase your knowledge and experience on the subject. Don’t have a
degree? Don’t worry; you don’t need one. With a little dedication you can definitely
master streaming systems (and your tech career). We’ve listed a few ideas for you to con-
sider. Again, you don’t necessarily have to work on them in the same order.

Pick an open source project to learn

Try to rebuild the problems you’ve worked through in the book in a real open source
streaming framework. See if you can recognize the parts that make up our Streamwork
engine in real streaming frameworks. What are instances, instance executors, and event
dispatchers called in the frame you picked?

Start a blog, and teach what you learn

The best way to learn something is to teach it. Start to build your own brand, and be
ready for some critical reviewers to come your way, too. It is interesting to see people
interpret the same concept from many different angles.

Attend meetups and conferences

There are many details and real-world use cases in stream systems and other event pro-
cessing systems. You can learn a lot from other people’s stories in related meetups and
conferences. You can also go further by speaking and holding virtual presentations and
discussions as well!

Contribute to open source projects

If there is one thing we can say will work for you most in this list, it’s this one. In our expe-
rience, nothing has increased our technology and people skills more than this strategy.
Contributing to open source projects exposes you to advanced technologies and allows
you to plan, design, and implement features with real-life professionals across the world.
Most importantly, we would bet that working on open source projects will fulfill you more
than anything you've ever been paid for. There is something about contributing to a cause
being driven by purpose that will pay more than any paycheck can for years to come.

Don't quit, ever

Obtaining any extraordinary goal comes with walking through failure over and over. Be
okay with failure. It is what will make you better.

273






Key concepts covered
in this book

A

At-least-once delivery SEMAaNtIC ......c.cueeuevreeuemrecrrireecrreerenieseieesenesesseesesseenes
At-most-once delivery SEMANTIC ......ccueeeurereecrrerereererereieessisesesseesessesesensesesseaens

BaACKPTESSUTE ...ttt s s snnnnnns
Backpressure watermark .......cceeecececeninininerenccetncee e

C

CAPACILY cuveeeeeereneienentttetetse ettt a bttt ettt e sesassesas
Capacity headroom ..ottt ettt
Capacity UHHZAION ....cucuvieeiicreiccieicicirecie ettt senees
CRECKPOINLE ettt ettt ettt se st asanees
Checkpoint @VENT .....ccuiuciiiciciiciiiciicic s ssaens
ChecKpOInt MANAZET ....cvevveeeeuereieieiieeeiereieeseseeeesesesetstseseeaesesesessastsesesesenns
COMPONENT ..ttt ettt sttt se et sas et sne e sesasseseons

D

DAG (directed acyclic Sraph) .....ccccveecuevreccurinecrnineciriceitcieeeeeeenseeesescsens
Data ParalleliSm ...ttt
DEliVery SEMANLICS w.uvucueerucueererreseseereesreenesseesesseesessesessesesessesesessesesessesessaesesnes
Downstream COMPONENL ......ccvvievirmiiiniiininiicinrereretseesseetese s

E

275

Chapter 5
Chapter 5

Chapter 9
Chapter 9

Chapter 9
Chapter 9
Chapter 9
Chapter 5
Chapter 9
Chapter 9
Chapter 2

Chapter 4
Chapter 3
Chapter 5
Chapter 2

Chapter 5
Chapter 2



276

Key concepts covered in this book

Event-based tIMING .....cccccevevririrerereeereeriririneeeesereisiseeesesesesseseseeeesesesssssssseaens Chapter 9

Event diSpatChier ..ottt Chapter 3

EVENT GrOUPING c.cuvterieeeiieiciccectrtrtrinteeeeeieseeettststs et sese et esesesessesesenen Chapter 7

EVEINT TIME 1ottt ettt ettt ettt Chapter 7

Exactly-once delivery SemMantic .......cocceeecueerercrrenecureremeesecsserescsseeseeseessesescseens Chapter 5
F

FaN QN o Chapter 4

FAN-OUL ottt ettt ettt ettt nes Chapter 4

FIelds GIrOUPING ...ccoceeueueeeieiririrteecieie ettt ettt es Chapter 3

FIXEd WINAOW .ttt ettt Chapter 7
G

GIoUPING STIATEZY .oviviviviviiiiiiicrc bbb nens Chapter 3
|

[dempPotent OPETAtION .ccccecuerrererceucucreieirtneneeereietsereseeeaeses et etsteeaese s s eseseeaenene Chapter 5

IIITIET JOIT ettt sttt ettt ettt bbbttt bbbt es Chapter 8

ITISTATICE ceeuuiiieietetece ettt ettt ettt ettt sttt st eaeaas Chapter 2

INSTANICE EXECULOT «.ouivieiinireteiiteteitrcte ettt ettt ettt b et ne e senen Chapter 2
J

JOD e ettt b e Chapter 2

JOII ettt ettt et et e et e et e s et s sse st e et eesteesesssesstesstesstessessesasesssesstesstensessesssesnsenes Chapter 8
L

Lambda architeCture ......ooveevcucucuriririccceieetrtreeeeeis ettt seees Chapter 10

LAE EVENT ettt ettt ettt ettt sttt sttt bbbt ees Chapter 7

LOGICAL PIAN ettt Chapter 2
M

Message (see event)
o

OPETALOT «.eveveiueuuieieieertseeeeie ettt ettt sttt ettt ettt e be bt eaeaes Chapter 2

OULET JOIM evitiriniueueieieietetet ettt ettt ettt sttt bt sttt e e setes Chapter 8
P

ParalleliSIN c.vovceceieieeeeieie ettt ettt Chapter 3

Processing time ..o Chapter 7
S

SESSION WINAOW ..euvriuiuencieieiririeecieieteietstseeee ettt eeaesese ettt sstseseeaenenes Chapter 7

SHUFTlE GrOUPINE «euvuueeeiririeeeieteieietre ettt ettt ettt aes Chapter 3

SHAING WINAOW ..ttt seas Chapter 7

SOUTCE oottt ettt ettt ettt sttt et ese s st st erennanaas Chapter 2

SEALE ettt Chapter 5

Stateful COMPONENLT .....vucuieiieiicicceceee e seaens Chapter 10



Key concepts covered in this book 277

Stateless COMPONENL ....cucueuruieecucieirirteeneeieieret ettt esesete e s sseseseeaesenes Chapter 10
SET@AIM ettt ettt ettt ettt ettt eb bt Chapter 2
T
Task PAralleliSm ...ccccucueerueieirieeeeee ettt Chapter 3
TRIASHING w.eveeiiicic ettt Chapter 9
Topology (see job)
Tumbling WINAOW ..ot seseaenae Chapter 7
Tuple (see event)
U
UpsStream COMPONEIT ....coveeiiuiruiniiinretiinretiinreteieeret et sessetsessessssessesessesnens Chapter 2
w
Watermark (see backpressure watermark or windowing watermark)
WINAOW it Chapter 7
WINAOWED JOIN ottt sttt seeens Chapter 7
WINAOWING STFALEZY ...vuvevineuereieieiriririeeeueieieietstteseseseseeststsesesesesesesessteaesesesesenns Chapter 7

Windowing Watermark ........c.ccccceeeceirecreinicrninceiicseiesesenesessesesesesesseesessesenes Chapter 7






index

A backpressure 217
.................................................. as symptom of underlying issue 230,
269
backpressure state 223
busy instances 222
capacity, defined 215

accuracy 116
delivery semantics 112, 113
join operations 189

acknowledger 123 capacity headroom
acknowledging defined 215

acknowledging code in components 127 limits of 216

at-most-once semantic with 123 capacity utilization
applications 8 defined 215
apply() function 46, 48 measuring 218
applyOperator() function 77, 100 spikes in 216
asynchronous model defined 217

backend services 26 dropping events 228-229, 268

fraud detection 85-86, 88
at-least-once semantic
checkpointing and 130

in distributed systems 222
in Streamwork engine 219
overview 150, 266

defined 138 performing stops 224-225
at-most-once semantic propagation 220
defined 138 reliability 212

fraud detection 121
overview 120, 122
with acknowledging 123

relieving 226
stopping sources 267
stopping upstream components

267
.................................................. streamlining streaming jobs 214
B thrashing 231-232

.................................................. watermarks 227
backend services backpressure state 223

defined 9 backward compatibility, checkpoints

multi-threading 10 251

streaming systems vs. 26 backwards pressure 217

279



barrier 250

batch processing systems
multi-stage architecture in 16
overview 11-12

blocker 250

busy instances 222

caching 240
capacity, defined 215
capacity headroom
defined 215
limits of 216
capacity utilization
defined 215
measuring 218
spikes in 216
change log 196
channels
communication between components
via 99
multiple channels 100
checkpoint 129, 243
checkpoint event 246
checkpoint id 248
checkpointing 128-129
checkpoint events
creating checkpoints with 246, 249
flowing through job 248
instance executors and 247
synchronization 250
checkpoints
backward compatibility 251
creating with checkpoint events 246,
249
loading 251
stateful components with 270
states and 243
storage 252
for at-least-once semantic 130
overview 128
state manipulation functions and 131
checkpoint manager 243
clock time 271
command prompt 42
components
downstream 89, 93
parallelizing 63

index

stateful 237, 241, 253

stateless 241, 272

upstream 89, 93, 267
concurrency, parallelization and 61
connections 91
consumer 130
control events 246
count windows 167

DAGs (directed acyclic graphs) 91, 92, 93,
144
data events 246
data execution independence 58
data grouping
comparing grouping behaviors 79
event dispatcher 76
event grouping 70
event grouping execution 75
event ordering 69, 78
events and instances 68
fields grouping 73-74, 77
shuffle grouping 71-72
data integrity, join operations 198-199
data parallelism 80
defined 57
task parallelism vs. 60
delivery semantics 109-139
accuracy 112
acknowledging code in components
127
at-least-once
defined 138
overview 122
with acknowledging 123
at-most-once
defined 138
fraud detection job 121
overview 120
checkpointing 128, 130, 131
choosing 119
comparing 137
defined 118
effectively-once 133
exactly-once 133, 135, 138
fraud detection 111
idempotent operation 134
latency and 110



delivery semantics (continued)
monitoring system usage 114-115
new system usage job
overview 115
requirements of 118
partial result 113
state 129
state handling code, in system usage analyzer
component 136
state handling, in transaction source component
132
times delivered 117
times processed 117
tracking events
early out events 126
event processing failures 125
overview 124
dempotency 133
directed acyclic graphs (DAGs ) 91, 92, 93,
144
directed graphs 91
dispatching 249
distributed systems, backpressure in 222
downstream components 89, 93

edges 91
effectively-once 118, 133, 145
efficiency, stream graph 96
elements. See events
emission events 190
emissions tracking job. See also join
operations
emission resolver 188
materialized view of stream 196-197,
208
overview 186-187
temperature events 195
vehicle events 195
event-based timing 244-245, 247, 271
Event class 36
event count based slicing 161
event dispatcher 62
event grouping 68, 70, 143
event processing 4
events 4, 50, 142
creating 36
dropping 228-229, 268

index 281

event time 180
join operations 190-191
late events 182
overview 33-34
slicing into data sets 175
tracking
early out events 126
event processing failures 125
overview 124
event time 180
exactly—once semantic 118, 133, 134, 135, 138,
145
expiration 178

fan-in 144, 194
fan-out 144
fault tolerance 128
fields grouping 70, 73
FIFO (first in first out) 28
fixed windows
count windows 167
defined 164, 174
detecting fraud with 166
in windowed proximity analyzer 165
time windows 167
flexibility, stream graph 98
fraud detection
asynchronous model 85-86, 88
at-most-once semantic 121
communication between components via
channels 99
components of 87
delivery semantics 111, 121
directed acyclic graphs 91, 92, 93
directed graphs 91
downstream components 89, 93
efficiency in 96
flexibility 98
graphs 91, 93, 105
logical plan 104
multiple channels 100
overview 82-83
queues 95
stream fan-in 90
in engine 102
join 103
to score aggregator 101



282 index

fraud detection (continued) J
stream fan-out 93 i ieieteeeicneeenenenonencnononenanenns
defined 90
multi-channel 97
to analyzers 94

Job class 41
job execution 35, 42-43

upstream components 89, 93 job output 65, 67
windowing jObS 33-34, 50, 142

fixed windows 166 job starter 47, 48
overview 157-160 JobStarter engine 47

session windows 173 join 149, 192
sliding windows 170 joining data in real time 149
join operations 185-209
................................................... accuracy 189
G data integrity 198-199
emissions tracking job 186-187
events 190-191

getData() function 36 inner joins
get detection result 117 defined 200
getEvents() function 48 outer joins vs. 202, 265
getEvents() method 36 joining data in real time 263
getltem() call 115 joining two tables 207
getState() function 132, 136, 137, 241, 243, 244, 246, joins, defined 192
247, 248 materialized view of stream 196-197,
graphs 91, 93, 105 208
groupBy() function 77 outer joins
group by key 73 defined 201
grouping 70 inner joins vs. 202, 265
grouping strategy 143 in streaming systems 204
guarantees. See delivery semantics types of 203
SQL 264

-------------------------------------------------- . Stream ]OlnS 264

H as fan-in 194
-------------------------------------------------- . deﬁned 193
hashing 74 temperature events 195

vehicle events 195
weak connection 205
................................................... windowed joins 206
I join operator 188

horizontal scaling 57

idempotent operation 134 K

inner joins 200, 202, 209, 265 ~ iiiieeecccceccssssssssssssscessssssssssssssssesnn s
input terminal 43

instance executors 243, 247
instances 54

instance states 254

IoT sensor 181 L

lambda architecture 137, 255
late events 182
latency 13, 110, 116. See also backpressure



index 283

left streams 204 P

life of dataelement 49 L iiiiiiiiiiiiieesaaiiiesiaatiassanetaasans
likely accurate enough results 229
lines 91

logical plans 33, 104

long running processes 14

parallelism 60, 80
parallelization 54, 142, 143
concurrency and 61
data execution independence 58
data parallelism
.................................................. . defined 57
M task parallelism vs. 60
................................................... importance of 56

messages. See events job output 65, 67
monitoring system usage 114-116 of components 63
monotonically increasing checkpoint ID 252 of operators 66
multi-stage architecture of sources 64
advantages of 15 real-time and 55

in batch processing systems 16 streaming jO.b 62

in stream processing systems 16 task parallelism 60
multi-threading 10 partial result, delivery semantics 113
mvn command 42 partitions 130

pipelines 33, 50
processing time 180

N process semantics 133
ncat command 42 Q
nccommand 42  eeesessecccecscctccccinncateccitnncttcccinnnstccns
near real-time 28 queues 95
netcat command 66 data transfer via 29
nodes 91 defined 28

reader 130
real-time analytics 4
real-time data

one by one processing 204
{operation}ByKey() function 77
operator executors 44, 46, 48

Operator interface 175 joining datain 263
operators 50, 142 parallelization and 55

building 39-40 windowing and 156
real-time processing 4
reliability, backpressure 212
right streams 204

rollback 130

overview 33-34
parallelizing 66
stateful computation 242
optimization 208
outer joins 209
defined 201 e S ........................
inner joins vs. 202
in streaming systems 204
types of 203 savepoints 251
out of sync 244 score aggregator operator 100, 101



284 index

SensorReader class 38, 48 state handling code
SensorReader source 41, 51 in system usage analyzer component 136
session windows in transaction source component 132
defined 172, 174 stateless components 237, 240, 241, 272
detecting fraud with 173 State object 132
timeout for 172 state parameter 241
setupInstance() function 132, 136, 241, 243, 270 states 235
shuftle grouping 70, 71 checkpoints and 243
slide interval 168, 176 defined 129, 238
sliding windows in different components 239
defined 168, 174 temporary data vs. 240
detecting fraud with 170 Stream class 41
windowed proximity analyzer 169 stream graph
snapshot 244 asynchronous model 85-86, 88
source 142 communication between components via
source executors 44, 45, 48 channels 99
sources 50, 242 directed acyclic graph 91, 92, 93
building 37 directed graph 91
overview 33-34 downstream components 89, 93
parallelizing 64 efficiency 96
stopping 267 example systems 105-108
SQL 264 fraud detection 84-85, 87
stateful components graph 91, 93
in system usage job 237 logical plan 104
stateless components vs. 241, 253 multiple channels 100
stateful computation 151 overview 82-83
checkpoint events stream fan-in 90
flowing through job 248 in engine 102
instance executors and 247 join 103
synchronization 250 to score aggregator 101
checkpoints stream fan-out 93
backward compatibility 251 defined 90
creating with checkpoint events 246, 249 multi-channel 97
loading 251 to analyzers 94
states and 243 stream graph 95
storage 252 streamwork engine 95, 98
event-based timing 244-245, 271 upstream components 89, 93
instance states 254 streaming analytics 4
lambda architecture 255 streaming frameworks 30-32
migrating streaming jobs 236 streaming job 36-41
operators 242 assembling job 41
sources 242 building source 37-38
stateful components creating events 36
in system usage job 237 job execution 35, 42-43
stateless components vs. 241, 253, 272 streaming systems 21-51, 141-151
with checkpoints 270 backend service vs. 25
states backpressure 150
checkpoints and 243 comparing 17
defined 129, 238 comparison of computer systems 7
in different components 239 delivery semantics 145-146

temporary data vs. 240 directed acyclic graphs 144



streaming systems (continued)
event grouping 143
events 33-34, 50
examples 7
jobs 33-34, 50
job starter 47, 48
life of data element 49
model stream system 18
operator executors 46, 48
operators 33-34, 50
parallelization 143
queues 28-29
real-time and 8
source executors 45, 48
sources 33-34, 50
stateful computations 151
stateless computations 151
streaming frameworks 30-32
streaming job 36-41
streams 33-34, 50
terminology 142
toll booth example 22-25, 27
windowed computations 148, 149
stream joins
as fan-in 194
defined 193
stream processing systems
defined 6
multi-stage architecture in 16
streams 33, 34, 142
Streams object 100
Streamwork framework 30, 31
synchronizing 249
synchronous model 26
SystemUsageAnalyzer class 242
SystemUsageAnalyzer component 127, 136
SystemUsageAnalyzer operator 115, 117

task parallelism
data parallelism vs. 60
defined 59
temporary data 240
thrashing 231-232
time based slicing 161
times delivered 117
times processed 117
time windows 167

index 285

toll booth job 22-25, 27
topologies 33-34, 50
tracking events

early out events 126

event processing failures 125

overview 124
TransactionSource class 100, 242
TransactionSource component 132
transforms. See operators
tumbling windows. See fixed windows
tuples. See events

upstream components 89
credit card fraud detection system 93
stopping 267

UsageWriter component 127

watermarks
backpressure 227
windowing 181
windowed computations 148. See also windowing
windowed joins 206
WindowedOperator interface 175
windowed proximity analyzer
fixed windows in 165
implementing 179
sliding windows 169
windowing 162, 163
challenges to implementing 176-177
event time 180
fixed windows 164-167
count windows 167
defined 164, 174
detecting fraud with 166
in windowed proximity analyzer 165
time windows 167
fraud detection 157-160
key-value store 178



286

windowing (continued)

late events 182

overview 261

real-time data and 156

session windows 171-173
defined 172, 174
detecting fraud with 173
timeout for 172

slicing events into data sets 175

index

sliding windows 168-170
defined 168, 174
detecting fraud with 170
windowed proximity analyzer 169
strategies 163-174
watermarks 181
windowed proximity analyzer 179
windows 161-162
window types 262



SOFTWARE ENGINEERING

grokking

Streaming Systems
Josh Fischer « Ning Wang

treaming systems minimize the time between receiving

and processing event data, so they can deliver responses

in real time. For applications in finance, security, and
IoT where milliseconds matter, streaming systems are a require-
ment. And streaming is hot! Skills on platforms like Spark,
Heron, and Kafka are in high demand.

Grokking Streaming Systems introduces real time event
streaming applications in clear, reader-friendly language. This
engaging book illuminates core concepts like data paralleliza-
tion, event windows, and backpressure without getting bogged
down in framework-specific details. As you go, you'll build your
own simple streaming tool from the ground up to make sure all
the ideas and techniques stick. The helpful and entertaining
illustrations make streaming systems come alive as you tackle
relevant examples like real-time credit card fraud detection and
monitoring loT services.

‘What's Inside

* Implement and troubleshoot streaming systems

* Design streaming systems for complex functionalities
* Spot networking bottlenecks and resolve backpressure

* Group data for high-performance systems

No prior experience with streaming systems is assumed.
Examples in Java.

Josh Fischer and Ning Wang are Apache Committers, and
part of the committee for the Apache Heron distributed stream
processing engine.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

/“ MANNING

Qtee eBoo 4

See first page

“Very well-written and enjoy-
able. I recommend this book
to all software engineers work-
ing on data processing.”

—Apoorv Gupta, Facebook

“Finally, a much-needed intro-
duction to streaming systems—
a must-read for anyone inter-
ested in this technology.”

—Anupam Sengupta, Red Hat

“Tackles complex topics in a
very approachable manner.”

—Marc Roulleau, GIRO

“A superb resource for helping
you grasp the fundamentals
of open-source streaming
systems.”

—Simon Verhoeven, Cronos

“Explains all the main stream-
ing concepts in a friendly way.
Start with this one!”

—Cicero Zandona, Calypso
Technologies

ISBN-13: 978-1-61729-730-4




	Streaming Systems
	brief contents
	contents
	preface
	acknowledgments
	about this book
	about the authors
	Part 1—Getting started with streaming
	1 Welcome to Grokking Streaming Systems
	What is stream processing?
	Streaming system examples
	Streaming systems and real time
	How a streaming system works
	Applications
	Backend services
	Inside a backend service
	Batch processing systems
	Inside a batch processing system
	Stream processing systems
	Inside a stream processing system
	The advantages of multi-stage architecture
	The multi-stage architecture in batch and stream processing systems
	Compare the systems
	A model stream processing system

	2 Hello, streaming systems!
	The chief needs a fancy toll booth
	It started as HTTP requests, and it failed
	AJ and Miranda take time to reflect
	AJ ponders about streaming systems
	Comparing backend service and streaming
	How a streaming system could fit
	Queues: A foundational concept
	Data transfer via queues
	Our streaming framework (the start of it)
	The Streamwork framework overview
	Zooming in on the Streamwork engine
	Core streaming concepts
	More details of the concepts
	The streaming job execution flow
	Your first streaming job
	Executing the job
	Inspecting the job execution
	Look inside the engine
	Keep events moving
	The life of a data element
	Reviewing streaming concepts

	3 Parallelization and data grouping
	The sensor is emitting more events
	Even in streaming, real time is hard
	New concepts Parallelism is important
	New concepts: Data parallelism
	New concepts: Data execution independence
	New concepts: Task parallelism
	Data parallelism vs. task parallelism
	Parallelism and concurrency
	Parallelizing the job
	Parallelizing components
	Parallelizing sources
	Viewing job output
	Parallelizing operators
	Viewing job output
	Events and instances
	Event ordering
	Event grouping
	Shuffle grouping
	Shuffle grouping: Under the hood
	Fields grouping
	Fields grouping: Under the hood
	Event grouping execution
	Look inside the engine: Event dispatcher
	Applying fields grouping in your job
	Event ordering
	Comparing grouping behaviors

	4 Stream graph
	A credit card fraud detection system
	More about the credit card fraud detection system
	The fraud detection business
	Streaming isn’t always a straight line
	Zoom into the system
	The fraud detection job in detail
	New concepts
	Upstream and downstream components
	Stream fan-out and fan-in
	Graph, directed graph, and DAG
	DAG in stream processing systems
	All new concepts in one page
	Stream fan-out to the analyzers
	Look inside the engine
	There is a problem: Efficiency
	Stream fan-out with different streams 
	Look inside the engine again
	Communication between the components via channels
	Multiple channels
	Stream fan-in to the score aggregator
	Stream fan-in in the engine
	A brief introduction to another stream fan-in: Join
	Look at the whole system
	Graph and streaming jobs
	The example systems

	5 Delivery semantics 
	The latency requirement of the fraud detection system
	Revisit the fraud detection job
	About accuracy
	Partial result
	A new streaming job to monitor system usage
	The new system usage job
	The requirements of the new system usage job
	New concepts: (The number of) times delivered and times processed
	New concept: Delivery semantics
	Choosing the right semantics
	At-most-once
	The fraud detection job
	At-least-once
	At-least-once with acknowledging
	Track events
	Handle event processing failures
	Track early out events
	Acknowledging code in components
	New concept: Checkpointing
	New concept: State
	Checkpointing in the system usage job for the at-least-once semantic
	Checkpointing and state manipulation functions
	State handling code in the transaction source component
	Exactly-once or effectively-once?
	Bonus concept: Idempotent operation
	Exactly-once, finally
	State handling code in the system usage analyzer component
	Comparing the delivery semantics again
	Up next . . .

	6 Streaming systems review and a glimpse ahead
	Streaming system pieces
	Parallelization and event grouping
	DAGs and streaming jobs
	Delivery semantics (guarantees)
	Delivery semantics used in the credit card fraud detection system
	Which way to go from here
	Windowed computations
	Joining data in real time
	Backpressure
	Stateless and stateful computations


	Part 2—Stepping up
	7 Windowed computations
	Slicing up real-time data
	Breaking down the problem in detail
	Breaking down the problem in detail (continued)
	Two different contexts
	Windowing in the fraud detection job
	What exactly are windows?
	Looking closer into the window
	New concept: Windowing strategy
	Fixed windows
	Fixed windows in the windowed proximity analyzer
	Detecting fraud with a fixed time window
	Fixed windows: Time vs. count
	Sliding windows
	Sliding windows: Windowed proximity analyzer
	Detecting fraud with a sliding window
	Session windows
	Session windows (continued)
	Detecting fraud with session windows
	Summary of windowing strategies
	Slicing an event stream into data sets
	Windowing: Concept or implementation
	Another look
	Key–value store 101
	Implement the windowed proximity analyzer
	Event time and other times for events
	Windowing watermark
	Late events

	8 Join operations
	Joining emission data on the fly
	The emissions job version 1
	The emission resolver
	Accuracy becomes an issue
	The enhanced emissions job
	Focusing on the join
	What is a join again?
	How the stream join works
	Stream join is a different kind of fan-in
	Vehicle events vs. temperature events
	Table: A materialized view of streaming
	Vehicle events are less efficient to be materialized
	Data integrity quickly became an issue 
	What’s the problem with this join operator?
	Inner join
	Outer join
	The inner join vs. outer join
	Different types of joins
	Outer joins in streaming systems
	A new issue: Weak connection
	Windowed joins
	Joining two tables instead of joining a stream and table
	Revisiting the materialized view

	9 Backpressure
	Reliability is critical
	Review the system
	Streamlining streaming jobs
	New concepts: Capacity, utilization, and headroom
	More about utilization and headroom
	New concept: Backpressure
	Measure capacity utilization
	Backpressure in the Streamwork engine
	Backpressure in the Streamwork engine: Propagation
	Our streaming job during a backpressure
	Backpressure in distributed systems
	New concept: Backpressure watermarks
	Another approach to handle lagging instances: Dropping events
	Why do we want to drop events?
	Backpressure could be a symptom when the underlying issue is permanent
	Stopping and resuming may lead to thrashing if the issue is permanent
	Handle thrashing

	10 Stateful computation
	The migration of the streaming jobs
	Stateful components in the system usage job
	Revisit: State
	The states in different components
	State data vs. temporary data
	Stateful vs. stateless components: The code
	The stateful source and operator in the system usage job
	States and checkpoints
	Checkpoint creation: Timing is hard
	Event-based timing
	Creating checkpoints with checkpoint events
	A checkpoint event is handled by instance executors
	A checkpoint event flowing through a job
	Creating checkpoints with checkpoint events at the instance level
	Checkpoint event synchronization
	Checkpoint loading and backward compatibility
	Checkpoint storage
	Stateful vs. stateless components
	Manually managed instance states
	Lambda architecture

	11 Wrap-up: Advanced concepts in streaming systems
	Is this really the end?
	Windowed computations
	The major window types
	Joining data in real time
	SQL vs. stream joins
	Inner joins vs. outer joins
	Unexpected things can happen in streaming systems
	Backpressure: Slow down sources or upstream components
	Another approach to handle lagging instances: Dropping events
	Backpressure can be a symptom when the underlying issue is permanent
	Stateful components with checkpoints
	Event-based timing
	Stateful vs. stateless components
	You did it!


	Key concepts covered in this book
	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W




