
Code example Android usecase
RxJava

equivalent
Features ImplementationDescriptionSupertypeType

Kotlin Flow API ~ Android cheat sheet

Flow - Flowable 

(Observable with BPM)

SharedFlow Flow PublishSubject 

(Starts with no value)

MutableSharedFlow SharedFlow &
 

FlowCollector

Same as SharedFlow See SharedFlow PublishSubject 

(Starts with no value)

StateFlow SharedFlow BehaviorSubject

(Always emits something)

MutableStateFlow StateFlow &
 

MutableSharedFlow

Same as StateFlow See StateFlow BehaviorSubject

(Always emits something)

callbackFlow 

(function, returns Flow)

-
Cold (emits lazy)

-

An asynchronous data 
stream that sequentially 

emits values and completes 
normally or with an excep-
tion (Unicast broadcaster).

A Flow shared between mul-
tiple collectors (aka sub-

scribers), so that only one 
flow is effectively run (Multi-

cast broadcaster).

A mutable SharedFlow that 
provides functions to emit 

values to the flow.

A specialized and limited 
version of SharedFlow that 
requires an initial value and 

emits a read only single 
data value to its subscribers.

 

A mutable StateFlow that 
provides a setter for value.

Creates a Flow and allows 
values to be emitted from a 
different CoroutineContext. 

Uses a hot SendChannel 
internally.

General data type for multi 
shot asynchronous data 

streams like the many call-
backs inside the View.java 

class or remote server data.

Useful for broadcasting ex-
pensive events to subscrib-
ers that can come and go. 
Like sharing remote gps 

data between multipe activi-
ties

Same as SharedFlow

Similar to LiveData but with 
far more operators and not 
limited to mainthread. Rec-
ommended for KMM proj-
ects. Does require manual 

lifecycle management.

MutablaLiveData equivalent, 
same up- and downsides 

from StateFlow apply

Converting multi shot An-
droid (Java) callback API’s 
to a Flow like the onLoca-
tionResult() and the onTex-

tChanged() listeners.

• Flow starts separately for 
each collector
• Various intermediate & ter-
minal operators
• Automatic backpressure 
management 

• All subscribes receive all 
emited values
• n most recent values are 
saved in replay cache
• New subscribers get the 
replay cache & new values

• emit() function to update 
value
• tryEmit() function for 
non-suspending updates

• Always has an initial value
• Fixed replaysize of 1
• No buffering
• Read access to current 
value without collecting

• Read/write access to cur-
rent value without collecting
• Setting the same value as 
before does nothing (dis-
tinct until changed built in)

• Conceptually very similar 
to a blocking queue
• Default capacity of 64 ele-
ments 
• Buffer can be configured

Version 1.1 ~ March 2021
by Remy Benza

Example A

Example B

Example A

Example B

Example A

Example B

Example A

Example B

See SharedFlow

See StateFlow

• General go to type
• Can be converted to 
SharedFlow / StateFlow 
with .shareIn and .stateIn 
operators.

• Can be configured with 
sharing strategy from the 
SharingStarted interface.
• Eagerly, Lazily and While-
Subscribed 

• Can be configured with 
sharing strategy from the 
SharingStarted interface.
• Eagerly, Lazily and While-
Subscribed 

Same as StateFlow

• Useful when you need to 
run computations in differ-
ent CoroutineContexts
• Can convert cluncky call-
back API’s to nicer Flows

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-flow/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-shared-flow/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-mutable-shared-flow/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-state-flow/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-mutable-state-flow/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/callback-flow.html
https://developer.android.com/kotlin/flow/stateflow-and-sharedflow#stateflow
https://gist.github.com/manuelvicnt/558118684eb38af8a27c22f2e5291058#file-fusedlocationproviderclientutils-kt
https://stackoverflow.com/questions/50858684/kotlin-android-debounce/61886376#61886376
https://github.com/rbenza/Curiosity-Reporting/blob/c829690674e437328d6321e7cd1278269fa3e4f6/app/src/main/java/nl/rvbsoftdev/curiosityreporting/data/Repository.kt#L39
https://developer.android.com/kotlin/flow#create
https://developer.android.com/kotlin/flow/stateflow-and-sharedflow#sharedflow
https://gist.github.com/psteiger/4ae43a8da0c23472b748622f7b30faa3#file-datasource-sharedflow-kt
https://stackoverflow.com/a/59247475/11310951

