
5/23/2020 android - Is there a way to reuse a Job instance? - Stack Overflow

https://stackoverflow.com/questions/42829575/is-there-a-way-to-reuse-a-job-instance 1/2

Is there a way to reuse a Job instance?
 Asked 3 years, 2 months ago Active 1 year, 2 months ago 2k timesViewed

Report this ad

9

4

I'm exploring the use of co-routines in the context of Android UI thread. I implemented
as described in the . Background work is stared from GUI and I want to re-
start it on every click (stop the currently running one and start it again).

contextJob
Coroutines Guide UI

But a job once canceled cannot be reused so even creating a child-job:

 val job = Job(contextJob)

and cancelling it does not help because it has to be-reassigned.

Is there a way to reuse a Job instance?

 android kotlin async-await coroutine kotlin-coroutines

edited Mar 19 '19 at 7:51

Marko Topolnik
167k 23 242 363

asked Mar 16 '17 at 9:09

atok
5,081 1 25 52

1 Answer Active Oldest

7

A has a very simple life-cycle by design. Its "Completed" state is , very much similar to the
"Destroyed" state of the Android . So, a parent is best to be associated with an

, as explained in the guide. You should cancel a parent job if and only if the activity is
destroyed. Because a destroyed activity cannot be reused, you'll never run into the need to reuse
its job.

Job final
Activity Job

Activity

The recommended approach to starting the work on each click is by using actors, because they
help you avoid unneccesary concurrency. The guide shows how to start them on each click, but it
does not show how to cancel a currently running action.

You will need a fresh instance of in a combination with to make a block of code
cancellable separately from everything else:

Job withContext

fun View.onClick(action: suspend () -> Unit) {
 var currentJob: Job? = null // to keep a reference to the currently running job
 // launch one actor as a parent of the context job
 // actor prevent concurrent execution of multiple actions

Votes

https://stackoverflow.com/questions/42829575/is-there-a-way-to-reuse-a-job-instance
https://stackoverflow.com/questions/42829575/is-there-a-way-to-reuse-a-job-instance?lastactivity
https://stackoverflow.com/posts/42829575/timeline
https://github.com/Kotlin/kotlinx.coroutines/blob/master/ui/coroutines-guide-ui.md#using-coroutine-parent-child-hierarchy
https://stackoverflow.com/questions/tagged/android
https://stackoverflow.com/questions/tagged/kotlin
https://stackoverflow.com/questions/tagged/async-await
https://stackoverflow.com/questions/tagged/coroutine
https://stackoverflow.com/questions/tagged/kotlin-coroutines
https://stackoverflow.com/posts/42829575/revisions
https://stackoverflow.com/users/1103872/marko-topolnik
https://stackoverflow.com/users/1356130/atok
https://stackoverflow.com/questions/42829575/is-there-a-way-to-reuse-a-job-instance?answertab=active#tab-top
https://stackoverflow.com/questions/42829575/is-there-a-way-to-reuse-a-job-instance?answertab=oldest#tab-top
https://stackoverflow.com/posts/42831291/timeline
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.experimental/-job/index.html
https://stackoverflow.com/questions/42829575/is-there-a-way-to-reuse-a-job-instance?answertab=votes#tab-top

5/23/2020 android - Is there a way to reuse a Job instance? - Stack Overflow

https://stackoverflow.com/questions/42829575/is-there-a-way-to-reuse-a-job-instance 2/2

 val eventActor = actor<Unit>(contextJob + UI, capacity = Channel.CONFLATED) {
 for (event in channel) {
 currentJob = Job(contextJob) // create a new job for this action
 try {
 // run an action within its own job
 withContext(currentJob!!) { action() }
 } catch (e: CancellationException) {
 // we expect it to be cancelled and just need to continue
 }
 }
 }
 // install a listener to send message to this actor
 setOnClickListener {
 currentJob?.cancel() // cancel whatever job we were doing now (if any)
 eventActor.offer(Unit) // signal to start next action when possible
 }
}

An actor is always active until its parent job (attached to an activity) is cancelled. An actor waits for
clicks and starts an on each click. However, each invocation of an is wrapped into
its own using block, so that it can be cancelled separately from its parent job.

action action
Job withContext

Note, that this code gracefully works for actions that are non-cancellable or just take some time to
cancel. An action might need to cleanup its resources when it is cancelled, and, because this
code uses an actor, it ensures that the cleanup of the previous action is finished before the next
one is started.

edited Dec 28 '17 at 19:08

Enleur
7 1 4

answered Mar 16 '17 at 10:25

Roman Elizarov
15.9k 8 42 51

https://stackoverflow.com/posts/42831291/revisions
https://stackoverflow.com/users/1554583/enleur
https://stackoverflow.com/users/1051598/roman-elizarov

