
1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 1/16

© 2020 Infinum Inc.

Client work

Services

Contact

Hire us

Privacy

14 min read

How to Prepare Your Android App for a

Pentest – Networking Edition

Renato Turić

Making your app as secure as possible is a must when developing an

application, especially if you deal with sensitive user information. To

identify the weak spots of your application's security, it is good practice

to have it tested by mobile security experts. The testing method they use

for this is called penetration testing.

Penetration tests, aka pentests, are simulated cyber attacks on your

application designed to find exploitable vulnerabilities. The results of a

penetration test are then used to improve the app's security.

The comprehensive guide to pentesting

In this blog post, we will concentrate on networking – specifically on the

TLS protocol, and tips on making your app as secure as possible when

connecting to a specific web service.

Furthermore, this post is the first in a series of articles about
pentesting, which will present an overview of what you can expect

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://infinum.com/client-work
https://infinum.com/services
https://infinum.com/contact
https://infinum.com/hire-us
https://infinum.com/privacy-policy
https://infinum.com/the-capsized-eight/author/renato-turic
https://infinum.com/

1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 2/16

© 2020 Infinum Inc.

when having your app pentested, as well as provide recommendations

on the neccessary preparations ahead of it.

Disclaimer: In our examples, we will use OkHttp for the integration part,
because it is a well established library and probably the most popular one
in the Android community.

TLS connection

Most applications today communicate with a web service of some kind.

Therefore, it's very important to have a secure connection.

The worst case scenario is having an app which uses HTTP connection

without the Transport Layer Security (TLS) protocol. It is inevitably

going to fail because your data will be transferred in plain text – and

therefore, very easy to track. TLS is a core part of encrypted

communication, which makes HTTPS calls secure and authenticated.

Even though it is based on SSL 3.0, you will often hear people using SSL

as a synonym for TLS- That's not 100% correct as SSL, a predecessor for

TLS, was deprecated in 2015 by the IETF.

In fact, most of the big companies are switching to TLS 1.2 as the

Internet's new minimum standard, starting from early 2020. (Mozzila,

Google, Microsoft, Apple).

What does Android OS o�er, with regard to TLS?

According to the documentation, Android supports TLS 1.2 since API

level 16, and is enabled by default since level 21. Unfortunately, this is

not 100% correct either.

Yes, you can rely on TLS 1.2 from API level 21/22 and above. However,

you cannot count on that for API levels 16 to 19. There is an excellent

article written by Ankush Gupta that describes this problem in more

detail, so feel free to check it out if you are want to know more about the

how and why.

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://square.github.io/okhttp/
https://tools.ietf.org/html/rfc7568
https://blog.mozilla.org/security/2018/10/15/removing-old-versions-of-tls/
https://security.googleblog.com/2018/10/modernizing-transport-security.html
https://blogs.windows.com/msedgedev/2018/10/15/modernizing-tls-edge-ie11/
https://webkit.org/blog/8462/deprecation-of-legacy-tls-1-0-and-1-1-versions/
https://developer.android.com/reference/javax/net/ssl/SSLSocket#default-configuration-for-different-android-versions
https://medium.com/tech-quizlet/working-with-tls-1-2-on-android-4-4-and-lower-f4f5205629a
https://infinum.com/

1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 3/16

© 2020 Infinum Inc.

With the knowledge of what Android OS has to offer and the goal to

achieve a secure connection using at least TLS 1.2, we're moving on to

the implementation guide.

Preparation phase - What you'll need to know

In this section, we will cover two specific cases. The first case is when

your minSdk is between API levels 16 and 19. In the other case, your

minSdk is API level 21 or higher.

MinSdk between API levels 16 and 19

If you want TLS 1.2 enabled on versions before Android 5, you will have

to extend the SSLSocketFactory and create your own implementation.

The implementation is quite simple and straightforward, and would

look something like this:

class TlsSocketFactory constructor(private val socketFa

 override fun getDefaultCipherSuites(): Array<String
 return socketFactory.defaultCipherSuites
 }

 override fun getSupportedCipherSuites(): Array<Stri
 return socketFactory.supportedCipherSuites
 }

 override fun createSocket(socket: Socket?, host: St
 return socketFactory.createSocket(socket, host
 }

 override fun createSocket(host: String?, port: Int
 return socketFactory.createSocket(host, port).e
 }

 override fun createSocket(host: String?, port: Int
 return socketFactory.createSocket(host, port, l
 }

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://infinum.com/

1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 4/16

© 2020 Infinum Inc.

This implementation contains our own socketFactory object, which

we use as a delegate and simply update the enabled protocols.

Now that we have a custom SSLSocketFactory implementation, we

have to tell OkHttp to use it via the sslSocketFactory builder

parameter:

The yourTrustManagers represent an array of TrustManager instances.

If you don't know how to create your own trust manager – or if you don't

 override fun createSocket(host: InetAddress?, port
 return socketFactory.createSocket(host, port).e
 }

 override fun createSocket(address: InetAddress?, po
 return socketFactory.createSocket(address, port
 }

 private fun Socket.enableTls(): Socket {
 if (this is SSLSocket) enabledProtocols += TlsV
 return this
 }
}

 if (Build.VERSION.SDK_INT < Build.VERSION_CODES.LOLLIP
 val sslContext = SSLContext.getInstance(TlsVersion
 sslContext.init(null, *yourTrustManagers*, null)

 sslSocketFactory(TlsSocketFactory(sslContext.socket
 }

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://infinum.com/

1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 5/16

© 2020 Infinum Inc.

need custom implementation, you can always load the default one. You

will learn how to load the default trust manager in the next section, in

which we will discuss certificates.

Note that the above stated TlsSocketFactory implementation only

sets the specified protocol as the default. It does not cover the case in

which the protocol is not installed on the device. To cover that instance,

you will have to use the ProviderInstaller from Google Play services.

Also, keep in mind that you can either call

installIfNeeded(context) or installIfNeededAsync(context),

and that it has to be done prior to creating the TlsSocketFactory.

For a more specific implementation, you can check the sample

implementation on these gists: installIfNeeded, installIfNeededAsync.

These implementations are provided by the OWASP team and can be

found in the OWASP-MSTG book 1.1.3 on pages 206, 207 and 208.

MinSdk API level 21+

If this is the case, you should use at least OkHttp 3.13.x – and it works

only on Android 5+. If you're already using that version of Android,

you're good to go, as this version of the library already uses TLS 1.2 as a

default for all HTTPS calls.

In case you are using an older version of the OkHttp library and cannot

update it for whatever reason, you will have to follow the steps described

in the section MinSdk between API levels 16 and 19 above.

Btw, if you are interested in the history of TLS configuration in OkHttp,

this is a superb read.

Coming back to the topic – now that your app uses a more secure version

of the TLS protocol, it's important to know how to successfully verify a

TLS connection.

Verifying a TLS connection

Two parts are essential in the process of verifying a TLS connection:

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://gist.github.com/Aksi0m/2e60f7a8e5708d37be89362b682c6111
https://gist.github.com/Aksi0m/5c51632d43390c0018151b3cbc14bd8c
https://github.com/OWASP/owasp-mstg/releases/tag/1.1.3-excel
https://square.github.io/okhttp/tls_configuration_history/
https://infinum.com/

1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 6/16

© 2020 Infinum Inc.

In the following paragraphs, we'll go over the specifics of each one.

Certificate verification (Certificate pinning)

The main focus of this section is going to be certificate pinning and

how to implement it. In addition, we'll take a brief look on how

certificate verification is done.

In order for a TLS connection to work as expected, the Client must have

a way of verifying that a certificate used on the server is trusted and

valid. In our case, the Client is the Android app. This is where

Certificate Authorities (CA) enter the stage.

A CA is an entity that is eligible to issue a trusted, time-limited

certificate. The certificate issued by a CA is a verifiable small data file

which contains identity credentials to help websites, people, and

devices represent their authentic online identity.

But how does our Android device differentiate between the certificates

issued by a CA and those so-called self-signed certificates? With the

help of a set of CAs, which the device has stored on the Android system

level. As of 4.2, Android contains over 100 CAs, which are updated in

each release.

To view all certificates in an Android device programmatically, you can

load the default TrustManager. That way, you will see all the file paths

that correspond to system-level certificates, but also the user-installed

certificates. These certificates are also known as root certificates. To

retrieve the default TrustManager you can use this code:

private fun getDefaultTrustManager(): Array<TrustManage
 val trustManagerFactory = TrustManagerFactory.getIn
 trustManagerFactory.init(null as KeyStore?)
 val trustManagers = trustManagerFactory.trustManage

Certificate verification (Certificate pinning)

. Hostname verification.

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://infinum.com/

1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 7/16

© 2020 Infinum Inc.

When an Android device tries to establish a secure connection with a

service, it goes through a process called the TLS handshake. During

connection setup, the server can send an entire chain of certificates

which the device has to verify with its set of trusted CAs.

The certificate chain is also known as the chain of trust, which is

basically a linked path of verification and validation from the end user

(in our case the Android device) to a root certificate.

The certificates in the chain are consisted of a root certificate, zero or

more intermediate certificates and a leaf certificate.

Check out the image below to clarify this confusion a bit:

As you can see, the certificates in the chain are dependent on each other.

This means that the chain of trust can be exploited even if just one of the

certificates' CA is compromised. The compromised CA can be used to

 if (trustManagers.size != 1 || trustManagers[0] !is
 throw IllegalStateException("Unexpected default
 }
 return trustManagers
}

Certificates in the chain are co-dependent

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://infinum.com/

1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 8/16

© 2020 Infinum Inc.

issue a certificate that will be automatically trusted by your Android

device, due to the default TrustManager.

To further protect your app from fraudulently issued certificates, you

can use a technique known as certificate pinning. Certificate pinning is

an extra defence mechanism against MITM (ie. man-in-the-middle)

attacks, in which the developer implements a custom trust manager that

contains only the certificates which can validate that web server that the

app is communicating with. This means that your app will neither trust

any other system-trusted CA nor the user-installed certificates.

Certificate pinning is one of the most common test cases in a

penetration test, so the following paragraph will elaborate on how to

prepare an app for it.

Preparation phase - What you'll need to know

In this section, we are going to show you how to successfully implement

certificate pinning for both self-signed certificates and those issued by a

CA. To pin a certificate, the first step is to decide which certificate from

the certificate chain to pin.

It is often recommended to pin the leaf certificate as the attack surface

is very small, thanks to the fact that the app interacts with that

certificate first. If that certificate can't be verified, the app will not be

usable.

Self-signed certificates

Pinning self-signed certificates is something you should only do for

testing environments. To pin a certificate in an Android app, the first

thing to do is to acquire the certificate, which can easily be done with

OpenSSL va the terminal:

$ openssl s_client -connect example.com:443 -showcerts

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://infinum.com/

1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 9/16

© 2020 Infinum Inc.

The command above will return a list of the entire certificate chain for

the specified website. If you want to save the certificates in a local file or

download one via a browser, find out how to do that here.

Having acquired the needed certificate, the next step is to create your

custom TrustManager which will contain the acquired certificate. This

can be done as follows:

This code loads a leaf_cert_expires_1_1_2077.pem file from the

raw resource folder and sets it as a certificate entry inside our empty

keystore, under MyLeafCert alias. After setting the required certificate in

the keystore, use the same keystore to initialise the trustManagers.

With everything ready, it's time to pass the instance of our

TrustManager to OkHttp via the sslSocketFactory builder function,

as described in the TLS connection section above. This method is

sometimes called hard certificate pinning because we bundle the pinned

private fun createCustomTrustManager(context: Context)
 val keyStore = KeyStore.getInstance("BKS").apply {
 val certificateFactory = CertificateFactory.getInst
 val trustManagerFactory = TrustManagerFactory.getIn

 context.resources.openRawResource(R.raw.leaf_cert_e
 keyStore.setCertificateEntry("MyLeafCert", cert
 }

 trustManagerFactory.init(keyStore)
 return trustManagerFactory.trustManagers
}

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://www.shellhacks.com/get-ssl-certificate-from-server-site-url-export-download/
https://infinum.com/

1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 10/16

© 2020 Infinum Inc.

certificate in our app, and we have to upload a new version of the app

that contains the new certificate every time the certificate changes or

gets renewed.

Certificates signed by a trusted CA

The previous code sample can be used in the same way for certificates

signed by a trusted CA. This is a good approach if you want just one

implementation for all cases. However, OkHttp does provide a different

mechanism for pinning non self-signed certificates, using the

CertificatePinner class. More information about this class can be

found here.

CertificatePinner employs a different kind of pinning, using the

certificate’s subject cryptographic public key for verification. Unlike the

previously described approach, in which you need to bundle the pinned

certificate with your app, public key pinning only needs the base64

SHA-256 hash value of the certificate public – considering that the hash

can be safely stored as a plain string in your app without causing

security issues.

The implementation is much more straightforward:

const val MY_LEAF_CERT_EXPIRES_1_1_2077 = "sha256/A23dA

private fun buildCertificatePinner(): CertificatePinner
 return CertificatePinner.Builder()
 .add("yourHostname.com", MY_LEAF_CERT_EXPIRES_1
 .build()
}

// Setting up OkHttp with the CertificatePinner object
OkHttpClient.Builder()
 .certificatePinner(buildCertificatePinner())
 .build()

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://square.github.io/okhttp/4.x/okhttp/okhttp3/-certificate-pinner/
https://infinum.com/

1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 11/16

© 2020 Infinum Inc.

So there you have it - a very simple and intuitive approach. In addition

to easier implementation, this approach has another noticeable benefit.

If the certificate expires, the server can just renew the certificate,

without changing the cryptographic public key of the certificate.

This essentially means that you won't need to update the app if the

certificate gets renewed. One of the downsides of this method is that it

does not support self-signed certificates.

Also, in the implementation above, you probably noticed the

yourHostname.com string. This value is used for hostname verification

and we will talk about this in the next section.

Finally, keep in mind that this is only a brief introduction to certificate

pinning, just enough to understand the basic and to be able to prepare

your app for penetration tests. For easier implementation and

maintenance, certificate pinning should be agreed upon with the

administrators of the web service the app is communicating with, to see

whether it is a good fit.

If you do decide on certificate pinning, make sure to have a better

understanding of the entire process.

Hostname verification

Finally, we've reached the second key part in verifying a TLS

connection, which is hostname verification.

A common mistake developers do is setting a permissive hostname

verifier, or even worse – accepting all hostnames. This basically means

that the attacker can issue a valid certificate with a compromised CA,

choose any domain name for it, and execute a MITM attack.

If you use OkHttp, the default implementation of the

HostnameVerifier will be enough to verify your connection to the

host. Nevertheless, we will show you a couple of examples how to

implement HostnameVerifier to gain a better understanding of how it

works.

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://infinum.com/

1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 12/16

© 2020 Infinum Inc.

Preparation phase - What you'll need to know

If you aren't using CertificatePinner for hostname verification, you

can use the Java's HostnameVerifier, as it is the base interface for

hostname verification. This interface is supported by OkHttp, you just

have to pass it to the hostnameVerifier builder function.

During the TLS handshake, the verification mechanism can call back to

implementers of this interface to determine whether this connection

should be allowed. The specific verification can be done using the

OkHostnameVerifier, although you will stumble upon some

implementations where

HttpsURLConnection.getDefaultHostnameVerifier() is used.

Under the hood, this is still using the OkHostnameVerifier but from

an internal Android version of the same class.

We're ready to check a sample implementation using

OkHostnameVerifier.INSTANCE.verify:

The code above will check whether the entered hostname

yourHostname.com is contained inside the certificate of the current

SSLSession. Only if it is, the verification will succeed. In case you want

to trust an entire subdomain, you can use the wildcard pattern notation,

but you will have to use the verifyHostname method like this:

hostnameVerifier { _, session ->
 OkHostnameVerifier.INSTANCE.verify("yourHostname.co
}

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://infinum.com/

1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 13/16

© 2020 Infinum Inc.

The implementation you choose will depend on your environment and

all the services your app connects to. If you want to know more about

the wildcard rules supported by this method, check this documentation.

Conclusion and notes

Hopefully by this point, you have a better understanding about the TLS

connection and how to prepare your app for the next penetration test.

Look out for the two key parts of a TLS connection, certificate and

hostname verification. If one of these two verifications are broken, the

entire TLS connection is nullified and the app becomes an easy target

for MITTM attacks.

To deepen the knowledge on handling a proper TLS connection in a

WebView and more, check out the OWASP Mobile Security Testing

Guide.

Also, if you (have) encounter(ed) any problems during the setup of a

proper TLS connection, please check ssl-debugging for answers and

solutions.

One last thing – in this post we did not cover the Android Network

security configuration, a powerful tool that lets apps customise their

network security settings without modifying the app code.

Unfortunately, it is available only since Android 7, but if you are lucky

enough to work on minSdk API level 24 or you are okay to have two

separate pinning implementations, depending on the sdk level, then

hostnameVerifier { hostname, _ ->
 OkHostnameVerifier.INSTANCE.verifyHostname(hostname
}

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://github.com/square/okhttp/blob/master/okhttp/src/main/java/okhttp3/internal/tls/OkHostnameVerifier.kt#L118
https://github.com/OWASP/owasp-mstg
https://noxxi.de/howto/ssl-debugging.html
https://developer.android.com/training/articles/security-config
https://infinum.com/

1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 14/16

© 2020 Infinum Inc.

Hungry for more Android-related

news?

Subscribe to our weekly #AndroidSweets newsletter.

this approach should definitely be the preferred way for handling your

network configurations.

Until the next post on pentesting, have fun coding!

You might feel like the room is spinning if you stare into Marijana Šimag's
illustration long enough.

January 13th, 2020

Read more about

Renato Turić

Testing

Android

Security

Mobile

your@email.com

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://infinum.com/the-capsized-eight/author/renato-turic
https://infinum.com/the-capsized-eight/tags/testing
https://infinum.com/the-capsized-eight/tags/android
https://infinum.com/the-capsized-eight/tags/security
https://infinum.com/the-capsized-eight/tags/mobile
https://infinum.com/

1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 15/16

© 2020 Infinum Inc.

or keep reading articles from our blog...

Bitrise vs. CircleCI for Android in a Head-to-H...

7 min read

In mobile development, usually, developers are the ones who will set up and maintain CI/CD.

In...

What Is Android Lint and How It Helps Write Mai...

7 min read

Subscribe

Josip K.

Sven V.

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://infinum.com/the-capsized-eight/bitrise-vs-circleci-for-android-in-a-head-to-head-battle
https://infinum.com/the-capsized-eight/bitrise-vs-circleci-for-android-in-a-head-to-head-battle
https://infinum.com/the-capsized-eight/what-is-android-lint-and-how-helps-write-maintainable-code
https://infinum.com/the-capsized-eight/what-is-android-lint-and-how-helps-write-maintainable-code
https://infinum.com/the-capsized-eight/author/josip-krnjic
https://infinum.com/the-capsized-eight/author/sven-vidak
https://infinum.com/

1/15/2020 How to Prepare Your Android App for a Pentest – Networking | Infinum

https://infinum.com/the-capsized-eight/how-to-prepare-your-android-app-for-a-pentest 16/16

© 2020 Infinum Inc.

When developers are not careful enough, things can go south. Classic developer oversights

include...

How to Test Custom Lint Checks

6 min read

In my previous article, I've talked about writing Lint checks and benefits they can bring to...

Sven V.

View all posts

https://www.facebook.com/infinumcom
https://twitter.com/infinumcom
https://instagram.com/infinumcom
https://www.linkedin.com/company/infinum
https://dribbble.com/infinum
https://clutch.co/profile/infinum
https://infinum.com/the-capsized-eight/how-to-test-custom-lint-checks
https://infinum.com/the-capsized-eight/how-to-test-custom-lint-checks
https://infinum.com/the-capsized-eight/author/sven-vidak
https://infinum.com/the-capsized-eight

