
1/22/2020 Android M: Tweaking System UI Tuner

https://www.protechtraining.com/blog/post/android-m-tweaking-system-ui-tuner-880 1/8

Android M: Tweaking System UI Tuner

 Back to Blog Home

Everything described in this post is based o� the Android 'M' Developer Preview, Release 2. As new releases (and the

source code) are made available, behaviors are subject to change and the contents of this post may change along

with them.

By now, you've probably already seen (or at least heard about) the new System UI Tuner developer option in Android

'M'. Beginning with Preview 2, this power tool has two new tricks up its sleeve:

1. Allows control over which status bar icons are displayed

2. Includes a one-click "demo" mode to set the entire status bar to a pre-set default (static) state

The best part is, both of these features are externally accessible. We can fairly easily control them from both the

device shell and using public APIs in an application.

Status Icon Control

https://www.protechtraining.com/blog

1/22/2020 Android M: Tweaking System UI Tuner

https://www.protechtraining.com/blog/post/android-m-tweaking-system-ui-tuner-880 2/8

With the UI found under System UI tuner -> Status bar, developers can easily turn o� most of the primary status

icons (except for noti�cations, battery level, and clock). Fortunately for us, these changes are persisted into

Settings.Secure under the key icon_blacklist . This is what the value looks like with all the icons disabled:

$ adb shell settings get secure icon_blacklist
ethernet,mobile,airplane,managed_profile,zen,cast,wifi,alarm_clock,hotspot,bluetooth

It's a comma-separated list of all the icon names. Below is a mapping of those names to their Settings description:

Name Settings Description

cast Cast

hotspot Hotspot

bluetooth Bluetooth

zen Do not disturb

alarm_clock Alarm

managed_pro�le Work pro�le

wi� Wi-Fi

ethernet Ehternet

mobile Cellular Data

airplane Airplane Mode

1/22/2020 Android M: Tweaking System UI Tuner

https://www.protechtraining.com/blog/post/android-m-tweaking-system-ui-tuner-880 3/8

The SystemUI application observes changes to icon_blacklist , so we can programmatically control the value from

the shell. Here are some working examples:

Enable all icons (remove the setting)
$ adb shell settings delete secure icon_blacklist

Just disable Bluetooth icon
$ adb shell settings put secure icon_blacklist bluetooth

Disable Bluetoot and Wi-Fi icons
$ adb shell settings put secure icon_blacklist bluetooth,wifi

Since this value lives in Settings.Secure , it cannot be written by third party application code (only read).

Demo Mode - More than Meets the Eye

On the surface, demo mode looks shows as a one-click solution to quickly set the status bar to a pre-de�ned "clean"

state. It doesn't o�er any con�guration options for controlling the appearance of the status bar items…or does it?

While demo mode in and of itself cannot be con�gured, it turns out that the mechanism used to trigger these

changes inside of SystemUI is unprotected broadcast intents. This means that, if we can �gure out what intents

SystemUI expects, we can con�gure our own "demo mode" from the shell or some application code.

SystemUI listens for broadcasts with the com.android.systemui.demo action string, and forwards them onto the

various demo mode handlers. Demo mode is controlled with a series of "commands" that are passed along in the

broadcasts as extras. Here is a list of the current top-level commands:

enter

exit

clock

battery

volume

status

network

noti�cations

bars

The enter and exit commands are used to turn demo mode on and o� (the equivalent of the "Show demo mode"

UI command, while the remaining commands con�gure the status bar if demo mode is enabled. From the shell, we

could do the following:

1/22/2020 Android M: Tweaking System UI Tuner

https://www.protechtraining.com/blog/post/android-m-tweaking-system-ui-tuner-880 4/8

Enable demo mode
$ adb shell am broadcast -a com.android.systemui.demo --es command enter

Disable demo mode
$ adb shell am broadcast -a com.android.systemui.demo --es command exit

Similarly, the following application code snippets can toggle demo mode:

// Enable demo mode
Intent intent = new Intent("com.android.systemui.demo");
intent.putExtra("command", "enter");
sendBroadcast(intent);

// Disable demo mode
Intent intent = new Intent("com.android.systemui.demo");
intent.putExtra("command", "exit");
sendBroadcast(intent);

Let's look in more details at each of the available commands…

clock

This command is used to set the value of the clock displayed—the default demo mode value is "5:20". It supports the

following extra parameters:

Name Description Values

hhmm Value of the clock hours/minutes "hhmm" string, such as "1200" for 12:00

Here is an example of setting the clock to 12:00, instead of 5:20, from the shell and application code:

$ adb shell am broadcast -a com.android.systemui.demo --es command clock \
 --es hhmm 1200

Intent intent = new Intent("com.android.systemui.demo");
intent.putExtra("command", "clock");
intent.putExtra("hhmm", "1200");
sendBroadcast(intent);

battery

This command is used to control the display of the battery level icon. It supports the following extra parameters:

Name Description Values

level Battery level 0-100%

plugged Connected to AC true/false

The following example sets the battery level to 50% and removes the "charging" symbol:

1/22/2020 Android M: Tweaking System UI Tuner

https://www.protechtraining.com/blog/post/android-m-tweaking-system-ui-tuner-880 5/8

$ adb shell am broadcast -a com.android.systemui.demo --es command battery \
 --es level 50 \
 --es plugged false

Intent intent = new Intent("com.android.systemui.demo");
intent.putExtra("command", "battery");
intent.putExtra("level", "50");
intent.putExtra("plugged", "false");
sendBroadcast(intent);

volume

This command is listed but not currently used in the preview. It's handler is a no-op.

network

This command controls the display of the network icons (Wi-Fi, mobile). If supports the following extra parameters:

Name Description Values

mobile Display the mobile network icon hide/show

wi� Display the wi� network icon hide/show

airplane Display the airplane mode icon hide/show

sims Set number of SIM card slot icons 1+

nosim Display the No SIM icon hide/show

When the mobile or wifi commands are supplied, additional sub-commands will control their appearance:

Name Description Values

level Set signal strength -1 = No service, 0 = Lowest, 4 = Full Bars

datatype Mobile network icon type 1x, 3g, 4g, e, g, h, lte, or roam

fully Show the associated network as connected true/false

The following example sets the mobile data icon to show connected Wi-Fi and LTE with 75% signal:

$ adb shell am broadcast -a com.android.systemui.demo --es command network \
 --es mobile show \
 --es fully true \
 --es level 3 \
 --es datatype lte
$ adb shell am broadcast -a com.android.systemui.demo --es command network \
 --es wifi show \
 --es fully true \
 --es level 3 \

1/22/2020 Android M: Tweaking System UI Tuner

https://www.protechtraining.com/blog/post/android-m-tweaking-system-ui-tuner-880 6/8

Intent intent = new Intent("com.android.systemui.demo");
intent.putExtra("command", "network");
intent.putExtra("mobile", "show");
intent.putExtra("fully", "true");
intent.putExtra("level", "3");
intent.putExtra("datatype", "lte");
sendBroadcast(intent);

intent.removeExtra("mobile");
intent.removeExtra("datatype");
intent.putExtra("wifi", "show");
sendBroadcast(intent);

status

This command is used to control the remaining icons displayed in the status bar. It supports the following extra

parameters:

Name Description Values

volume Display vibrate icon vibrate/none

bluetooth Display Bluetooth icon connected/disconnected/none

location Display location icon hide/show

alarm Display alarm clock icon hide/show

zen Display priority noti�cations icon important/none

mute Display silence icon hide/show

speakerphone Display speakerphone icon hide/show

managed_pro�le Display work pro�le icon hide/show

cast Display cast icon hide/show

hotspot Display hotpost icon connected/none

The current preview does not support this command—it ignores any incoming requests. This may get �xed in a

future preview. The default behavior of demo mode is to hide all these icons.

noti�cations

This command controls the visibility of the noti�cation icons. It supports the following extra parameters:

Name Description Values

visible Whether or not to display noti�cation icons true/false

The following example hides the noti�cation icons from status bar:

$ adb shell am broadcast -a com.android.systemui.demo --es command notifications \
 --es visible false

1/22/2020 Android M: Tweaking System UI Tuner

https://www.protechtraining.com/blog/post/android-m-tweaking-system-ui-tuner-880 7/8

Intent intent = new Intent("com.android.systemui.demo");
intent.putExtra("command", "notifications");
intent.putExtra("visible", "false");
sendBroadcast(intent);

bars

This command controls the coloring of the status bar and soft navigation bar. It supports the following extra

parameters:

NameDescription Values

mode
Display mode of status bar and navigation bar

backgrounds

opaque, translucent, semi-transparent, transparent,

warning

The warning value sets the bars to the orange state used in battery saver mode.

The following example forces the status and naviation bars to have an opaque black background:

$ adb shell am broadcast -a com.android.systemui.demo --es command bars \
 --es mode opaque

Intent intent = new Intent("com.android.systemui.demo");
intent.putExtra("command", "bars");
intent.putExtra("mode", "opaque");
sendBroadcast(intent);

Enabling External Control
Before any of the above commands will work, the "Enable demo mode" switch in System UI Tuner -> Demo mode

must be toggled on. This process can be done by the user, or we can automate it from the shell:

$ adb shell put settings global sysui_demo_allowed 1

In the current preview, demo mode doesn't have to actually be enabled for external broadcasts to work. It just has to

have been enabled at least once in the past. This may change in future releases.

This part cannot be done from application code because applications do not have the rights to write into the

Settings.Global table.

Custom Demo Example
Tying a handful of these commands together, we can create an application method that builds the status bar just the

way we want it for our demos:

1/22/2020 Android M: Tweaking System UI Tuner

https://www.protechtraining.com/blog/post/android-m-tweaking-system-ui-tuner-880 8/8

public void onEnableClick(View v) {
 //Enter demo mode
 Intent intent = new Intent("com.android.systemui.demo");
 intent.putExtra("command", "enter");
 sendBroadcast(intent);

 //Set the clock to 12:00
 intent.putExtra("command", "clock");
 intent.putExtra("hhmm", "1200");
 sendBroadcast(intent);

 //Show the LTE icon at 75% strength
 intent.putExtra("command", "network");
 intent.putExtra("mobile", "show");
 intent.putExtra("fully", "true");
 intent.putExtra("level", "3");
 intent.putExtra("datatype", "lte");
 sendBroadcast(intent);

 //Show the Wifi icon at 75% strength
 intent.removeExtra("mobile");
 intent.removeExtra("datatype");
 intent.putExtra("wifi", "show");
 sendBroadcast(intent);

 //Show the battery unplugged at 50%
 intent.putExtra("command", "battery");
 intent.putExtra("level", "50");
 intent.putExtra("plugged", "false");
 sendBroadcast(intent);

 //Hide all notifications
 intent.putExtra("command", "notifications");
 intent.putExtra("visible", "false");
 sendBroadcast(intent);

 //Make the status bar a fixed black background
 intent.putExtra("command", "bars");
 intent.putExtra("mode", "opaque");
 sendBroadcast(intent);
}

public void onDisableClick(View v) {
 //Exit demo mode
 Intent intent = new Intent("com.android.systemui.demo");
 intent.putExtra("command", "exit");
 sendBroadcast(intent);
}

Hopefully in future versions, this control will become more formal and accessible. But until then, enjoy tweaking your

status bars to look perfect for those app screenshots!

Want to learn more about Android development? Check out one of our upcoming Android training courses!

https://www.protechtraining.com/training/browse/front-end-web-mobile-development/mobile-development
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fwww.protechtraining.com%2Fblog%2Fpost%2Fandroid-m-tweaking-system-ui-tuner-880&title=Android%20%27M%27%20includes%20a%20System%20UI%20Tuner%20developer%20option%20to%20control%20aspects%20of%20the%20status%20bar.%20We%20can%20also%20programmatically%20control%20this%20element%20from%20the%20shell%20or%20another%20application.
https://twitter.com/intent/tweet?url=https%3A%2F%2Fwww.protechtraining.com%2Fblog%2Fpost%2Fandroid-m-tweaking-system-ui-tuner-880&text=Android%20%27M%27%20includes%20a%20System%20UI%20Tuner%20developer%20option%20to%20control%20aspects%20of%20the%20status%20bar.%20We%20can%20also%20programmatically%20control%20this%20element%20from%20the%20shell%20or%20another%20application.
http://www.linkedin.com/shareArticle?url=https%3A%2F%2Fwww.protechtraining.com%2Fblog%2Fpost%2Fandroid-m-tweaking-system-ui-tuner-880&title=Android%20%27M%27%20includes%20a%20System%20UI%20Tuner%20developer%20option%20to%20control%20aspects%20of%20the%20status%20bar.%20We%20can%20also%20programmatically%20control%20this%20element%20from%20the%20shell%20or%20another%20application.&mini=true

