
 THE DZONE GUIDE TO

BROUGHT TO YOU IN PARTNERSHIP WITH

Java
Development and Evolution
 VOLUME III

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

2

3	 Executive Summary
BY MATT WERNER

4	 Key Research Findings
BY G. RYAN SPAIN

6	 Yes, You Can: Java 9 for the Legacy Developer
BY WAYNE CITRIN

8	 Design Patterns in the Age of Microservices and Frameworks
BY GRZEGORZ ZIEMOŃSKI

12	 Concurrency: Java Futures and Kotlin Coroutines
BY NICOLAS FRÄNKEL

16	 The State of Debugging in Java
BY TED NEWARD

19	 Checklist: Code Smells Java 8 Can Fix
BY TRISHA GEE

22	 Infographic: Make Java Even GR8R

24	 Separating Microservices Hype and Reality for Pragmatic Java Developers
BY REZA RAHMAN

27	 Diving Deeper into Java

30	 A Troublesome Legacy: Memory Leaks in Java
BY ENRIQUE LÓPEZ MAÑAS

32	 Executive Insights on the State of the Java Ecosystem
BY TOM SMITH

36	 Java Solutions Directory

46	 Glossary

DEAR READER,
Every year we see new languages appear that claim to unseat Java

from its throne. However, 22 years since it’s conception, Java remains

the steadiest programming language out there. While other languages

fit certain niches, Java developers are among the most employable

software professionals out there. However, writing Java doesn’t mean

that you’re dealing with legacy systems or old-fashioned code styles.

Java has continued to move along with the times.

Java 8 introduced lambdas, finally giving the power of functional

programming to Java developers, resulting in more concise code.

Meanwhile, the addition of the Streams API allowed developers to

handle larger volumes of data. This summer we’ll (hopefully!) see the

introduction of new features with Java 9, but the primary focus will

be on the new module system: Project Jigsaw. These modules will be

a game changer for teams that need to refactor their applications to

be truly scalable. JShell will give us an interactive Java REPL meaning

that the exploration of language features is more lightweight, and

let’s face it, fun! There are also improvements to the Streams API

and support for HTTP/2 and WebSocket. Other language fans will

say they already have all of these capabilities, but on top of the

language’s rock solid foundations, it reinstates Java as a compelling

choice for future applications. This guide provides a tour of Java 9

features for legacy developers, guaranteed to make you feel more

comfortable with the upcoming changes.

This guide will also take you through some of the main talking points

of modern Java, from designing appropriately for microservices, using

Java 8 to address code smells, to concurrency with Java Futures and

Kotlin Coroutines. Since Google I/O this year, Kotlin has received a

boom in popularity. Whether it becomes the language of choice for

Android developers remains to be seen, but it’s interoperability with

Java ensures that no one will get left behind.

There are some skills, like how to handle memory leaks and

debugging that will always be required in the Java developer’s

toolbox, and these are also discussed in this guide. While it’s easy to

ignore these fundamentals for the sake of newer features, I urge all

readers to take note of these pages.

I would say that Java 9 ushers in the third golden age for Java

developers. It all started with the Age of Applets, a game changer

in its day. We then had the Age of JavaEE, which brought about

Hibernate and Spring, frameworks that became so rooted in Java

development that they remain a staple of many technology stacks.

With the introduction of real modularity and building on Streams, we

have entered a new era, where Java developers no longer need to

feel left behind by the advances of modern programming languages.

For those who feel like Java is too verbose, Kotlin has emerged as

a great alternative on the JVM and Android devices. If you’re a new

Java developer, there’s never been a better time to get on board.

However, if you’re like me and have grown up with Java throughout

your career, it’s very difficult not to be excited.

Welcome to the golden age of Java!

BY JAMES SUGRUE
DZONE ZONE LEADER, AND CHIEF ARCHITECT, OVER-C

PRODUCTION
Chris Smith
DIRECTOR OF PRODUCTION

Andre Powell
SR. PRODUCTION COORDINATOR

G. Ryan Spain
PRODUCTION PUBLICATIONS EDITOR

Ashley Slate
DESIGN DIRECTOR

MARKETING
Kellet Atkinson
DIRECTOR OF MARKETING

Lauren Curatola
MARKETING SPECIALIST

Kristen Pagàn
MARKETING SPECIALIST

Natalie Iannello
MARKETING SPECIALIST

Miranda Casey
MARKETING SPECIALIST

Julian Morris
MARKETING SPECIALIST

BUSINESS
Rick Ross
CEO

Matt Schmidt
PRESIDENT AND CTO

Jesse Davis
EVP

Gordon Cervenka
COO

SALES
Matt O’Brian
DIRECTOR OF BUSINESS DEV.

Alex Crafts
DIRECTOR OF MAJOR ACCOUNTS

Jim Howard
SR ACCOUNT EXECUTIVE

Jim Dyer
ACCOUNT EXECUTIVE

Andrew Barker
ACCOUNT EXECUTIVE

Brian Anderson
ACCOUNT EXECUTIVE

Chris Brumfield
SALES MANAGER

Ana Jones
ACCOUNT MANAGER

Tom Martin
ACCOUNT MANAGER

EDITORIAL
Caitlin Candelmo
DIRECTOR OF CONTENT AND
COMMUNITY

Matt Werner
PUBLICATIONS COORDINATOR

Michael Tharrington
CONTENT AND COMMUNITY MANAGER

Mike Gates
SR. CONTENT COORDINATOR

Sarah Davis
CONTENT COORDINATOR

Tom Smith
RESEARCH ANALYST

Jordan Baker
CONTENT COORDINATOR

Anne Marie Glen
CONTENT COORDINATOR

Special thanks to our topic
experts, Zone Leaders,
trusted DZone Most Valuable
Bloggers, and dedicated
users for all their help and
feedback in making this
guide a great success.

TABLE OF CONTENTS

Want your solution to be featured in coming guides?
Please contact research@dzone.com for submission information.

Like to contribute content to coming guides?
Please contact research@dzone.com for consideration.

Interested in becoming a dzone research partner?
Please contact sales@dzone.com for information.

mailto:research%40dzone.com?subject=
mailto:research%40dzone.com?subject=
mailto:sales%40dzone.com?subject=

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

3

BY MATT WERNER
PUBLICATIONS COORDINATOR, DZONE

If you believe the number of articles online, you might be

inclined to believe that Java is dying, but we all know better.

While the release of Java 9 and Java EE 8 have been delayed,

the excitement and passion of the Java community remains

strong, proven by groups like the Java EE Guardians, who

formed to push Oracle to commit to improvements for Java

EE. This energy is not just a result of complacent developers

failing to leave behind a stagnant language. New JVM

technologies like the Kotlin language are making incredible

waves in the industry, and Java itself has been encouraging

the combination of functional and object-oriented

programming with features like lambdas. While the language

may be 22 years old, it has not rested on its laurels, and with

Project Jigsaw on the horizon, Java and its stewards continue

to prove that they are constantly looking to the future.

DZone surveyed 652 tech professionals to learn about how

our audience has embraced Java and its related technologies,

and collected a series of articles from some of Java’s strongest

champions to educate our readers about how to use them.

JAVA IS BECOMING MORE FUNCTIONAL
DATA 77% of survey respondents are using lambda functions

in 2017, compared to 46% in 2016, while 67% of members feel

that they do more functional development than they used to,

compared to 52% in 2016.

IMPLICATIONS As developers continue to adopt Java 8

features, they are becoming more comfortable with

creating more functional code (51% are either comfortable

or very comfortable). Of those who are using functional

programming, 80% say that coding in Java is more fun than it

was before.

RECOMMENDATIONS One comment that has plagued Java

is its perception of being a verbose language, but Java 8’s

features are starting to catch on and help developers enjoy

Java programming, whether they have been long-time fans,

are new to the language, or have to use it for their work.

If developing Java applications has lost its luster, consider

experimenting with Java 8 features like lambdas and the

Streams API. You can see a fun comparison of how these

features can decrease development time in our infographic

on page 23. In addition to making development more

enjoyable, you’ll be able to easily ensure that the code you

develop now will be compatible with new Java 9 features

thanks to multi-release JAR files, which you can read about in

Wayne Citrin’s article on page 6.

KOTLIN IS MAKING A SPLASH
DATA 61% of DZone members use at least one JVM-based

language, and 27% use one or more of these in production.

Kotlin adoption doubled year-over-year, from 7% to 16%,

while the top two languages, Scala (38%) and Groovy (43%),

decreased by 3% and 2% over last year, respectively.

IMPLICATIONS JetBrains’ relatively new JVM language is

slowly turning into a force to be reckoned with. Version 1.0

was released in 2016, and considering its massive growth since

last year and interest within DZone’s audience, its adoption

numbers will likely continue to grow.

RECOMMENDATIONS First, you certainly don’t need to use

a non-Java JVM language, especially since Java 8 and Java

9 features will provide some overlap with languages like

Scala, which supports functional programming in Java.

However, given Google’s support of Kotlin as an official

Android development language and the importance of mobile

development in general, it would be a worthwhile investment

to learn more about the language. For an excellent article on

Kotlin Coroutines, you can refer to Nicolas Fränkel’s article

on page 12.

JAVA EE AND SPRING’S TUG-OF-WAR
DATA While Spring 4.x adoption stagnated over the past year

(47% in 2017 compared to 49% in 2016), Java EE 7 saw a 10%

increase in usage, from 41% to 51%, mirroring a Spring 3.x

decrease from 37% to 27% in the same amount of time.

IMPLICATIONS Adoption of platforms can normally take a

long time, but this year saw a stark increase in the use of Java

EE 7 that mirrored a 10% drop in usage of Spring 3.x. Though

Spring 4.x was also released 4 years ago, the sudden jump of

Java EE7 adoption and abandoning of Spring 3.x suggests that

Spring 4.x is missing something for older Spring fans that

Java EE 7 may offer.

RECOMMENDATIONS Refactoring and upgrading applications

can take an enormous amount of time and money, so if an

update is required, you need to carefully weigh your options.

Based on how DZone members have responded, Java EE 7

seems to be a sensible choice over newer versions of Spring.

However, Spring 5 was previewed in February 2017, and it

will include a functional web framework and will be built

on Reactive Core. It’s scheduled to be released in June. Java

EE 8 is scheduled to be released later this year, but there has

been confusion around Oracle’s commitment to the project,

leading to the formation of MicroProfiles and the Java EE

Guardians. While we don’t have a full idea of how these

upgraded platforms will perform, it’s a good idea to wait until

they are released, and weigh your options unless it’s critical

that you update now.

Executive
Summary

https://dzone.com/articles/big-numbers-comic
https://dzone.com/articles/lang-buddies-comic

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

4

BY G . RYAN SPAIN
PRODUCTION COORDINATOR, DZONE

652 software professionals completed DZone’s
2017 Java survey. Respondent demographics are
as follows:

•	 38% of respondents identify as developers or
engineers; 23% identify as developer team
leads; and 19% identify as architects.

•	 The average respondent has 14.4 years of
experience as an IT professional. 66% of
respondents have 10 years of experience or
more; 29% have 20 years or more.

•	 43% of respondents work at companies
headquartered in Europe; 30% work at
companies with HQs in North America.

•	 20% of respondents work at organizations
with more than 10,000 employees; 22% at
organizations between 1,000 and 10,000
employees; and 23% at organizations between
100 and 999 employees.

•	 85% develop web applications or services; 53%
develop enterprise business apps; and 26%
develop native mobile applications.

THE NEW NORMAL
It should be no surprise that Java 8 continues to gain

popularity in both new and refactored apps, especially

considering the delays in Java 9’s launch. In this year’s

Java survey, 89% of respondents say they use Java 8 in

new apps (up 8% from last year), while 49% say they

use Java 8 in existing applications (up 15% from last

year). So as Java 8 continues to be cemented as the go-to

Java version for new applications, it is also increasingly

turned to for refactoring. Features new to Java 8 are

getting more use as well. 77% of respondents to this

year’s survey said they use lambdas in new code, 75%

say they use streams in new code, and 48% say they use

optionals in new code. This is a considerable increase

from Java 8 feature usage last year, where 46% of

respondents said they used lambdas, 43% said they used

streams, and 29% said they used optionals in new code.

Key
Research
Findings

 Which of the following ‘enterprise’ Java platforms do
you or your organization use?

 What versions of Java are being used at your
organization?

0

20

40

60

Java
EE 5

Java
EE 6

Java
EE 7

Spring
2.x

Spring
3.x

Spring
4.x

Other None

14 34 52 6 27 47 6 11

Java 5
and below

Java 6

Java 7

Java 8

0%

2%

17%

89%

FOR
NEW APPS

FOR
EXISTING APPS NOT USING

11%

35%

63%

49%

89%

65%

32%

9%

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

5

THE ‘FUN’ IN ‘FUNCTIONAL’
As the use of these Java 8 features increases, so do

the number of developers who feel they write more

functional code. Last year, 52% of survey respondents

said they write more functional code after adoption

of Java 8. This year, that number grew to 67%. Mixing

“old style” and “new style” code in the same application

increased from 55% in 2016 to 62% in 2017. A little over

half of the respondents feel either very comfortable (11%)

or comfortable (40%) with mixing functional and object-

oriented paradigms in their code; 21% have no opinion.

Furthermore, of the respondents who said they are now

programming more functionally using Java 8’s features,

80% said these features have made programming in Java

more fun.

THE JVM BEYOND JAVA
61% of survey respondents said they use at least one non-

Java, JVM-based language, and 27% use one or more of

these languages in production. Groovy and Scala usage

had no significant change over the last year—38% of

survey respondents said they use Scala, compared to 41%

in 2016, and 43% of respondents said they use Groovy,

compared to 45% in 2016. Kotlin, on the other hand, more

than doubled its adoption rate since last year, with 16%

of respondents saying they use the language, as opposed

to 7% last year.

IDE TIME
The Eclipse IDE remains the most popular place for Java

developers to primarily write their code, though it saw a

7% decrease from last year’s survey results (50% in 2016

vs. 43% in 2017). IntelliJ IDEA Ultimate has a considerable

user base as well, with 27% of respondents saying they

primarily write their Java code in that IDE. NetBeans

usage increased 7% from 2016 (10% in 2016 vs. 17% in

2017), overtaking IntelliJ IDEA Community Edition as the

third most popular IDE.

JAVA EE VS. SPRING... AGAIN
Last year we saw a significant increase in Spring

4.x usage from 2015—38% to 49%. This year showed

stagnation in Spring 4.x adoption, as 47% of respondents

said they or their organization use Spring 4.x. Spring

3.x, on the other hand, had a fairly dramatic drop, from

37% in 2016 to 27% in 2017. This decrease in Spring 3

usage was mirrored by a jump in Java EE 7 usage; 41% of

respondents in 2016 said they or their organization used

Java EE 7, compared to 52% this year. This makes Java

EE 7 the most popular enterprise Java platform again, as

it was in 2015, but like in 2015, the gap is fairly narrow

between Java EE 7 and Spring 4. 30% of respondents use

both Java EE 7 and Spring 4, and only 24% use neither of

the two platforms.

 Where do you primarily write Java code?  In your opinion, what is the most important new feature
in Java 9?

42

17

27

12

11

Other

Text Editor

Eclipse

NetBeans

IntelliJ IDEA
Community

IntelliJ IDEA
Ultimate

35

29

16

7

7

6

Module System
(Jigsaw)

HTTP/2 Client

Jshell REPL

Improved
Process API

Other

No Opinion

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

6

Whenever a new version of Java is released, there’s
a lot of excited discussion about new language
constructs and APIs, features, and benefits. But the
excitement quickly wanes for legacy developers
when they remember that they must maintain and
enhance existing applications, rather than create
new ones. Most applications must be backwards-
compatible with earlier versions of Java, which
do not support new features presented by shiny
new Java releases. So, legacy developers resign
themselves to sit on the sidelines and watch.

Fortunately, Java 9’s designers have kept this in mind,

and have worked out ways to make Java 9’s new features

accessible for developers who have to worry about their

applications supporting older versions of Java. Here we

will discuss how new features in Java 9 — multi-release

JAR files, Project Jigsaw (the new module system), and the

modular JDK and jlink — make Java 9 usable and relevant

to legacy Java developers.

MULTI-RELEASE JAR FILES
Until recently, there hasn’t been a good way to use the

latest Java features while still allowing the application

to run on earlier versions of Java that don’t support that

application. Java 9 finally provides a way to do this for both

new APIs and for new Java language constructs: multi-

release JAR files.

Multi-release JAR files look just like old-fashioned JAR

files, with one crucial addition: there’s a new nook in the

JAR file where you can put classes that use the latest Java

9 features. If you’re running Java 9, the JVM recognizes

this nook, uses the classes in that nook, and ignores any

classes of the same name in the regular part of the JAR

file. If you’re running Java 8 or earlier, however, the JVM

doesn’t know about this special nook and will ignore it,

and only run the classes in the regular part of the JAR file.

In the future, when Java 10 comes out, there’ll be another

nook specifically for classes using new Java 10 features,

and so forth.

The Java 9 JDK will contain a version of the jar.exe tool

that supports creating multi-release JAR files. Other non-

JDK tools will also provide support.

PROJECT JIGSAW
The Java 9 module system (also known as Project Jigsaw),

is undoubtedly the biggest change to Java 9. One goal

of modularization is to strengthen Java’s encapsulation

mechanism so that the developer can specify which

APIs are exposed to other components and count on

the JVM to enforce the encapsulation. Modularization’s

encapsulation is stronger than that provided by the

public/protected/private access modifiers of classes and

class members. The second goal of modularization is

to specify which modules are required by which other

modules, and to ensure that all necessary modules are

present before the application executes. In this sense,

modules are stronger than the traditional classpath

mechanism, since classpaths are not checked ahead of

time, and errors due to missing classes only occur when

Yes, You Can: Java
9 for the Legacy
Developer

BY WAYNE CITRIN
CTO, JNBRIDGE

Java 9 offers several features that
allow developers maintaining
older Java apps to use new
features while maintaining
backwards compatibility.

The new multi-release JAR files
in Java 9 allow developers to
write code using new APIs and
language features while making
new code invisible when running
on older versions of Java.

Java 9’s new module capability
allows for the gradual
introduction of modules while
allowing modularized and not-
yet-modularized components to
be mixed and matched.

01

02

03

Q U I C K V I E W

http://openjdk.java.net/jeps/238
http://openjdk.java.net/jeps/238
http://openjdk.java.net/projects/jigsaw/spec/sotms/

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

7

the classes are actually needed, which means that an

incorrect classpath might be discovered only after an

application has been run for a long time, or after it has

been run many times.

Java 9 offers both a classpath and a module path. The

classpath works just as before, and you can keep using it.

JAR files in the module path are interpreted as modules

— they expose APIs and have dependencies that can

be checked at compile time. If you want to go the extra

mile, you can modularize a JAR file by adding information

specifying which APIs are exposed and which other

modules are required. However, even if you don’t, if your

JAR file is in the module path, it’s considered an automatic

module, although it lacks some information that can be

used to check whether anything is missing. Also, all

the JAR files in the classpath are considered part of the

unnamed module, which means they become part of the

module system, too.

This means that it really doesn’t matter whether your JAR

files are modularized or whether they’re still old school.

It may even be the case that you can’t modularize a JAR

file because it doesn’t belong to you. All modules play in

the module system, whether they’re up to date or not, and

whether they’re in the classpath or the module path. If

you modularize your JAR files and put them in the module

path, you’ll get additional benefits and avoid potential

errors. But even if you don’t, you get many of the benefits

of the module system. It all might sound complicated, but

it just works.

HOW TO SUPPLY YOUR OWN JAVA ENVIRONMENT
WITH MODULAR JDK AND JLINK
One problem with legacy Java applications is that the end

user might not be using the right Java environment, and

one way to guarantee that the Java application will run

is to supply the Java environment with the application.

Java allows the creation of a private or redistributable JRE,

which may be distributed with the program. The JDK/JRE

installation comes with instructions on how to create a

private JRE. Typically, you take the JRE file hierarchy that’s

installed with the JDK, keep the required files, and retain

those optional files whose functionality your application

will need. The process is a bit of a hassle: You need to

maintain the installation file hierarchy, you have to be

careful that you don’t leave out any files and directories

that you might need, and, while it does no harm to do so,

you don’t want to leave in anything that you don’t need,

since it will take up unnecessary space. It’s easy to make

a mistake. So why not let the JDK do the job for you?

With Java 9, it’s now possible to create a self-contained

environment with your application and anything it needs

to run. No need to worry that the wrong Java environment

is on the user’s machine, and no need to worry that

you’ve created the private JRE incorrectly.

The key to creating these self-contained runtime images

is the module system. Not only can you modularize

your own code (or not), but the Java 9 JDK is itself now

modularized. The Java class library is now a collection

of modules, as are the tools of the JDK itself. The module

system requires you to specify the base class modules that

your code requires, and that in turn will specify the parts

of the JDK that are needed. To put it all together, we use a

new Java 9 tool called jlink. When you run jlink, you’ll get

a file hierarchy with exactly what you’ll need to run your

application — no more and no less. It’ll be much smaller

than the standard JRE.

With jlink, it becomes easy to package up your application

and everything it needs to run, without worrying about

getting it wrong, and only packaging that part of the

runtime that’s necessary to run your application. This

way, your legacy Java application has an environment on

which it’s guaranteed to run.

With this newfound knowledge, it’s clear that legacy

developers need not sit on the sidelines and watch as

everyone else gets to play with the new Java 9 features.

Using these approaches, anyone can take advantage of all

Java 9 has to offer, without breaking compatibility with

earlier versions of Java.

Wayne Citrin is CTO at JNBridge, the leading provider of

interoperability tools to connect Java and .NET frameworks. The

architect of award-winning bridging technology JNBridgePro and JMS

Adapters for .NET and BizTalk, Citrin has been solving Java and .NET

interoperability issues since .NET’s beta days. Citrin has served as a

leading researcher in programming languages and compilers, and was

on the Computer Engineering faculty at the University of Colorado,

Boulder. Visit Citrin’s blog at jnbridge.com/jnblog.





With Java 9, it’s now possible

to create a self-contained

environment with your application

and anything it needs to run.

http://www.oracle.com/technetwork/java/javase/jre-8-readme-2095710.html
http://www.oracle.com/technetwork/java/javase/jre-8-readme-2095710.html
http://openjdk.java.net/jeps/220
http://openjdk.java.net/projects/jigsaw/doc/jdk-modularization.html
http://openjdk.java.net/projects/jigsaw/doc/jdk-modularization.html
http://openjdk.java.net/jeps/282
https://www.jnbridge.com/jnblog
https://twitter.com/waynecitrin
https://www.linkedin.com/in/waynecitrin/

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

8

We are in the age of web applications, frameworks,
and microservices architectures. We can spin a
module of our application within a day from zero to
production. Any technical concern other than coding
up our business rules has already been taken care of
for us. We simply write the business rules, put them
in a framework, and it works. What does that mean
for design patterns? Do we still need them or we can
safely put them in a museum?

BACK TO THE ROOTS
To answer the questions posed in the introduction, we will

need to go back in time a little and answer other questions

first. Why did we need the patterns in the first place? What

problems did they solve back then? Do we still face these

problems today?

Each of the patterns has, of course, its own separate motivation

and reason for existence, yet, in general, the goal is pretty

much the same. We want our code to be as simple as possible,

while at the same time, meeting all the users’ current needs

and ensuring future maintainability.

If we are to judge the usefulness of design patterns, we should

look towards that general goal. Not flexibility, configurability,

or any other fancy characteristic. These either lie within our

users’ current needs or they don’t. These are either necessary for

future maintainability or can be added later on in the project and

therefore should be kept out for the sake of simplicity.

GANG OF FOUR PATTERNS
The GoF patterns have garnered a bad reputation in the industry.

I suppose that’s because of the typical developer learning process

– we learn something new, overuse it, notice problems when

it’s too late, and only then use the thing with caution. The same

can be said about design patterns. I remember my own feeling

of enlightenment when I read the book for the first time. I saw

the patterns EVERYWHERE. I was sure I could build entire

applications using them almost exclusively.

All that being said, if we are to stay objective, we should forget

this bad reputation and any bad memories associated with it.

The fact that either we, or someone else, overused the Gang of

Four’s design patterns in the past has nothing to do with their

usefulness. Taking this into account would be like demanding

a ban of rope production because some people used ropes to

hang themselves. Instead, we’ll look towards our general goal

from the previous section.

When it comes to coding up business rules and configuring

frameworks, especially in a microservices (or even serverless)

architecture, most of the GoF patterns are not very useful.

Actually, it would be faster to enumerate those that might be.

The strategy pattern is a good fit when there is a group of

business algorithms to choose from. When the same conditionals

start popping up in different places in the code, using an

interface and injecting strategies provides a simpler and more

maintainable solution. It’s not that common, but it happens.

The façade pattern can be used when implementing an anti-

corruption layer, to shield our brand new microservice from

the influence of legacy systems. Otherwise, the complexity of

the old system might start spilling into the new one, making

things harder to understand and maintain.

The adapter pattern can help us decouple our business code

from the frameworks and libraries that our application builds

upon. One use case for this type of usage of the pattern would

be to deal with a library that has a particularly annoying

Design Patterns in the

Age of Microservices

and Frameworks

BY GRZEGORZ ZIEMOŃSKI
JAVA ENGINEER, ZOOPLUS AG

We should strive to keep our
code as simple as possible.

GoF patterns are good
for framework and library
designers.

DDD patterns are useful
for business code, but we
should be aware of the
associated risks.

PoEAA pattern usage
seems settled, but it’s not
necessarily a good thing.

01

02

03

04

Q U I C K V I E W

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

9

API. In such a case, we could use the pattern to simplify our

business code. In another approach, the pattern can be used

to build an application-wide architectural style, commonly

known as Hexagonal Architecture or Ports and Adapters.

The decorator pattern allows us to add our own bits to the

code provided by those frameworks and libraries. These

usually include simple operations like logging or gathering

some kind of metrics.

To be honest, I can’t think of any other GoF pattern that I have

used recently, and I don’t use the ones above too often either.

They just somehow don’t fit with the nature of the business

code. Now, does that mean that the GoF patterns are almost

entirely useless?

Rubies are red,

Some threads are green,

But only Java has AbstractSingletonProxyFactoryBean.

The poem above might give you a little hint. My answer

is obviously negative. The frameworks and libraries, that

make our work so pleasant and easy, have to use the GoF

patterns themselves to remain flexible and configurable. For

a framework, this is an actual “current” user need, not some

kind of a developer whim.

Often these patterns are not even under the hood – we as

programmers take advantage of them. The most notable

examples would be the usage of Proxy patterns by Hibernate and

developers implementing template methods to configure Spring.

DOMAIN-DRIVEN DESIGN PATTERNS
The GoF patterns were more suitable for technical problems,

like the ones framework designers face. But if a pattern is

domain-driven, and I really mean domain-driven here, it has

to be useful in writing business code, right? Well, the answer is

not so simple.

As written in the original Domain-Driven Design book, and

various other sources, DDD techniques are not suitable for

every single project. The same applies to DDD patterns, both

strategic and tactical ones. Let’s take at some of them from the

perspective of our general goal.

Entities are a great pattern to represent domain concepts that

are defined by their identity, rather than their attributes. If they

come from a domain model built upon a ubiquitous language,

they greatly simplify the understanding and, therefore, the

maintainability of the system. At the same time, if there is no

clearly defined domain model, it’s worth exploring if the same

work can be done without having entities at all. I have recently

seen such a case in practice. By replacing a bunch of entities and

their associated repositories with simple SQL and JDBC, we built

the exact same thing with much less code and hassle.

Value Objects are a great example of a pattern that can both

simplify and complicate your code. Whenever your value

field requires certain validation logic or special manipulating

operations, putting them together in the same place can easily

save you a headache. At the same time, if a value field has no

such logic or operations, we’re just complicating the system

by adding extra wrapper classes, each in an extra source

file (at least in Java). Does it improve maintainability or user

experience? Not really.

Last in this section but surely not least, let’s touch on

aggregates. When an aggregate scope is reasonably small,

it provides an easy mechanism for maintaining consistency

and a central place for associated business rules. On the other

hand, when an aggregate gets too big, it can literally slow

down the entire system, reduce code maintainability, and start

turning into a “god class.” Therefore, aggregates should be used

with caution, especially if they are not used as a part of a full

blown DDD process.

PATTERNS OF ENTERPRISE APPLICATION
ARCHITECTURE
I expect that some readers might not be familiar with Martin

Fowler’s great book, but, at the same time, I’d expect the

majority of you to have used the patterns described in it.

Maybe my picture of the entire Java world is a bit limited, but

from what I’ve seen so far, it seems that almost every Java web

application is built upon three patterns described in the book:

Domain Model, Service Layer, and Repository.

I don’t want to say here that it’s necessarily a bad thing. In the

end, most web applications are conceptually similar and it’s

the business rules that differentiate them. What I’d merely like

to achieve here is to challenge the status quo a bit.

The same way I described my SQL/JDBC solution as an

alternative to DDD patterns, this same solution could be

considered as an alternative to the triplet above. I invite you

to do the same thing in your projects. Read the book or the

pattern descriptions online and see if you could simplify your

code by abandoning or switching a pattern or two. Maybe an

active record or a transaction script is just what your project

needs right now?

CONCLUSION
Currently, the development world is full of patterns. From

tricks to avoid inheritance to big architectural decisions –

we have a pattern for everything. The keys to choose the

right ones are code simplicity, users’ needs, and future

maintainability. These keys drive us pretty far from the GoF

patterns, at least as long as we’re not writing a framework

or a library. They make us look cautiously on the DDD

patterns, unless we’re following a full-blown DDD process.

Last, but not least, they make us continuously challenge the

architectural status quo, so that we pick the right tool for the

job at hand.

Grzegorz Ziemoński is a software craftsman specializing in

writing clean, readable code. He shares his skills and ideas both as a

blogger and as a Java Zone Leader at DZone. He currently works for

Zooplus, but keeps dreaming about his own consultancy. Personally,

he’s a big fan of self-development and a proud owner of two lovely cats.





https://twitter.com/grzegorztj?lang=en
https://www.linkedin.com/in/grzegorzziemonski?ppe=1

SPONSORED OP IN ION

https://www.lagomframework.com/?utm_source=dzone&utm_medium=full-page-ad&utm_campaign=WEB-PAGE-lagom-framework-home&utm_term=none&utm_content=guide-modern-java

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

1 1

Today’s enterprise applications are deployed to everything from

mobile devices to cloud-based clusters running thousands of

multi-core processors. Users have come to expect millisecond

response times and close to 100% uptime. And “user” means

both humans and machines. Traditional architectures, tools

and products simply won’t cut it anymore. To paraphrase Henry

Ford’s classic quote: We can’t make the horse any faster, we need

cars for where we are going.

While many organizations move away from the monolith

and adopt a microservices-based architecture, they mostly do

little more than creating microlith instances communicating

synchronously with each other. The problem with a single

instance is that it cannot be scalable or available. A single

monolithic thing, whatever it might be (a human or a software

process), can’t be scaled out, and can’t stay available if it crashes.

But it is also true that as soon as we exit the boundary

of the single service instance we enter a wild ocean of

non-determinism—the world of distributed microservice

architectures.

The challenge of building and deploying a microservices-based

architecture boils down to all the surrounding requirements

needed to make a production deployment successful. For example:

Built using technologies proven in production by some of the

most admired brands in the world, Lagom is the culmination

of years of enterprise usage and community contributions

to Akka and Play Framework. Going far beyond the developer

workstation, Lagom combines a familiar, highly iterative code

environment using your existing IDE, DI, and build tools, with

additional features like service orchestration, monitoring,

and advanced self-healing to support resilient, scalable

production deployments.

WRITTEN BY MARKUS EISELE
DEVELOPER ADVOCATE, LIGHTBEND, INC.

The Evolution of
Scalable Microservices
From building microliths to designing reactive

microsystems

“Java finally gets microservices tools.” -Infoworld.com

CASE STUDY
Hootsuite is the world’s most widely used social media platform

with more than 10 million users, and 744 of the Fortune

1000. Amidst incredible growth, Hootsuite was challenged by

diminishing returns of engineering pouring time into scaling

their legacy PHP and MySQL stack, which was suffering from

performance and scalability issues. Hootsuite decomposed their

legacy monolith into microservices with Lightbend technologies,

creating a faster and leaner platform with asynchronous, message-

driven communication among clusters. Hootsuite’s new system

handles orders of magnitude more requests per second than the

previous stack, and is so resource efficient that they were able to

reduce Amazon Web Services infrastructure costs by 80%.

STRENGTHS

NOTABLE CUSTOMERS

• 	 Powered by proven tools: Play Framework, Akka Streams,

Akka Cluster, and Akka Persistence.

• 	 Instantly visible code updates, with support for Maven

and existing dev tools.

• 	 Message-driven and asynchronous, with supervision and

streaming capabilities.

• 	 Persistence made simple, with native event-sourcing/

CQRS for data management.

• 	 Deploy to prod with a single command, including service

discovery and self-healing.

• 	 Verizon

• 	 Walmart

• 	 Samsung

• 	 Hootsuite

• 	 UniCredit Group

• 	 Zalando

CATEGORY
Microservices
Framework

NEW RELEASES
Multiple times per
year

OPEN SOURCE
Yes

WEBSITE www.lagomframework.com BLOG lagomframework.com/blogTWITTER @lagom

SPONSORED OP IN ION

Lagom Framework By Lightbend

• 	 Service discovery

• 	 Coordination

• 	 Security

• 	 Replication

• 	 Data consistency

• 	 Deployment orchestration

• 	 Resilience (i.e. failover)

• 	 Integration with other

systems

http://www.Infoworld.com
https://www.lagomframework.com/?utm_source=dzone&utm_medium=link&utm_campaign=WEB-PAGE-lagom-framework-home&utm_term=none&utm_content=guide-modern-java
https://www.lagomframework.com/?utm_source=dzone&utm_medium=link&utm_campaign=WEB-PAGE-lagom-framework-home&utm_term=none&utm_content=guide-modern-java
https://www.lagomframework.com/blog/?utm_source=dzone&utm_medium=link&utm_campaign=WEB-PAGE-lagom-framework-blog&utm_term=none&utm_content=guide-modern-java
https://www.lagomframework.com/blog/?utm_source=dzone&utm_medium=link&utm_campaign=WEB-PAGE-lagom-framework-blog&utm_term=none&utm_content=guide-modern-java
https://twitter.com/lagom

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

1 2

A long time ago, one had to manually start new threads

to run code concurrently in Java. Not only was this hard to

write, it also was easy to introduce bugs that were hard to find.

Testing, reading, and maintaining such code was no walk in the

park, either. Since that time, and with a little incentive coming

from multi-core machines, the Java API has evolved to make

developing concurrent code easier. Meanwhile, alternative JVM

languages also have their opinion about helping developers write

such code. In this post, I’ll compare how it’s implemented in Java

and Kotlin.

To keep the article focused, I deliberately left out performance to

write about code readability.

ABOUT THE USE CASE
The use case is not very original. We need to call different web

services. The naïve solution would be to call them sequentially,

one after the other, and collect the result of each of them. In that

case, the overall call time would be the sum of the call time of

each service. An easy improvement is to call them in parallel and

wait for the last one to finish. Thus, performance improves from

linear to constant — or for the more mathematically inclined,

from o(n) to o(1).

To simulate the calling of a web service with a delay, let’s use the

following code (in Kotlin, because this is so much less verbose):

 class DummyService(private val name: String) {
 private val random = SecureRandom()
 val content: ContentDuration
 get() {
 val duration = random.nextInt(5000)
 Thread.sleep(duration.toLong())
 return ContentDuration(name, duration)
 }
}
data class ContentDuration(val content: String, val duration:
Int)

THE JAVA FUTURE API
Java offers a whole class hierarchy to handle concurrent calls. It’s

based on the following classes:

Callable: A Callable is a “task that returns a result.” From another

view point, it’s similar to a function that takes no parameter and

returns this result.

Future: A Future is “the result of an asynchronous computation.”

Also, “the result can only be retrieved using method get when

the computation has completed, blocking if necessary until it is

ready.” In other words, it represents a wrapper around a value,

where this value is the outcome of a calculation.

Executor Service: An ExecutorService “provides methods

to manage termination and methods that can produce a

Future for tracking progress of one or more asynchronous

tasks.” It is the entry point into concurrent handling code

in Java. Implementations of this interface, as well as more

specialized ones, can be obtained through static methods in

the Executors class.

This is summarized in the diagram here.

Calling our services using the concurrent package is a two-

step process.

CREATING A COLLECTION OF CALLABLES
First, there needs to be a collection of Callable to pass to the

executor service. This is how it might go:

1.	 Form a stream of service names.

2.	 For each service name, create a new dummy service

initialized with the string.

3.	 For every service, return the service’s getContent() method

reference as a Callable. This works because the method

signature matches Callable.call() and Callable is a

functional interface.

Concurrency: Java
Futures and Kotlin
Coroutines

BY NICOLAS FRÄNKEL
SOFTWARE ARCHITECT/DEVELOPER, SAP

Developing concurrent code
has seen a lot of changes
since its inception, from
synchronized blocking code
to futures.

In Java, using both futures
and the streaming API creates
a lot of clutter, especially if the
underlying code uses checked
exceptions.

In Kotlin, a new experimental
feature called coroutine brings
a way to write sequential-
looking but concurrent-
running code.

01

02

03

Q U I C K V I E W

https://static.dzone.com/static/images/guides/2017java/Frankel_1.png

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

1 3

This is the preparation phase. It translates into the following

code:

List<Callable<ContentDuration>> callables = Stream.
of(“Service A”, “Service B”, “Service C”)
 .map(DummyService::new)
 .map(service -> (Callable<ContentDuration>)
service::getContent)
 .collect(Collectors.toList());

PROCESSING THE CALLABLES
Once the list has been prepared, it’s time for the

ExecutorService to process it, AKA the “real work.”

1.	 Create a new executor service — any will do.

2.	 Pass the list of Callable to the executor service. and stream

the resulting list of Future

3.	 For every future, either return the result or handle the

exception.

The following snippet is a possible implementation:

ExecutorService executor = Executors.newWorkStealingPool();
List<ContentDuration> results = executor.
invokeAll(callables).stream()
 .map(future -> {
 try { return future.get(); }
 catch (InterruptedException | ExecutionException
e) { throw new RuntimeException(e); }
 }).collect(Collectors.toList());

THE FUTURE API, BUT IN KOTLIN
Let’s face it: While Java makes it possible to write concurrent

code, reading and maintaining it is not that easy, mainly due to:

•	 Going back and forth between collections and streams.

•	 Handling checked exceptions in lambdas.

•	 Casting explicitly.

var callables: List<Callable<ContentDuration>> =
arrayOf(“Service A”, “Service B”, “Service C”)
 .map { DummyService(it) }
 .map { Callable<ContentDuration> { it.content } }
val executor = Executors.newWorkStealingPool()
val results = executor.invokeAll(callables).map { it.get() }

KOTLIN COROUTINES
With version 1.1 of Kotlin comes a new experimental feature

called coroutines. From the Kotlin documentation:

“Basically, coroutines are computations that can be suspended without

blocking a thread. Blocking threads is often expensive, especially under

high load […]. Coroutine suspension is almost free, on the other hand. No

context switch or any other involvement of the OS is required.”

The leading design principle behind coroutines is that they must

feel like sequential code but run like concurrent code. They are

based on the diagram here.

Nothing beats the code itself, though. Let’s implement the same

as above, but with coroutines in Kotlin instead of Java futures.

As a pre-step, let’s just extend the service to ease further

processing by adding a new computed property wrapped

around content of type Deferred:

val DummyService.asyncContent: Deferred<ContentDuration>
 get() = async(CommonPool) { content }

This is standard Kotlin extension property code, but notice the

CommonPool parameter. This is the magic that makes the code run

concurrently. It’s a companion object (i.e. a singleton) that uses a

multi-fallback algorithm to get an ExecutorService instance.

Now, onto the code flow proper:

1.	 Coroutines are handled inside a block. Declare a variable list

outside the block to be assigned inside it.

2.	 Open the synchronization block.

3.	 Create the array of service names.

4.	 For each name, create a service and return it.

5.	 For each service, get its async content (declared above) and

return it.

6.	 For each deferred, get the result and return it.

// Variable must be initialized or the compiler complains
// And the variable cannot be used afterwards
var results: List<ContentDuration>? = null
runBlocking {
 results = arrayOf(“Service A”, “Service B”, “Service C”)
 .map { DummyService(it) }
 .map { it.asyncContent }
 .map { it.await() }
}

TAKEAWAYS
The Future API is not so much a problem than the Java

language itself is. As soon as the code is translated into Kotlin,

the readability significantly improves. Yet having to create

a collection to pass to the executor service breaks the nice

functional pipeline.

For coroutines, the only compromise is to move from a var to a

val to get the final results (or to add the results to a mutable list).

Also, remember that coroutines are still experimental. Despite

all of that, the code does look sequential — and is thus more

readable and behaves in parallel.

The complete source code for this post can be found on GitHub

in Maven format.

Nicolas Fränkel is a Software Architect with 15 years of experience

consulting for several customers in telecoms, finance, retail, and the public

sector. He’s usually working on Java and Spring technologies with interests

like software quality, build processes, and rich Internet applications. He

currently works for an eCommerce solution vendor leader and doubles as a

teacher, trainer, and author.





https://kotlinlang.org/docs/reference/coroutines.html
https://static.dzone.com/static/images/guides/2017java/Frankel_2.png
https://github.com/nfrankel/coroutines
https://twitter.com/nicolas_frankel
https://www.linkedin.com/in/nicolasfrankel

SPONSORED OP IN ION

OPEN SOURCE JAVA RAD FRAMEWORK
FOR ENTERPRISE APPLICATION DEVELOPMENT

https://www.cuba-platform.com/?utm_source=dzone&utm_medium=display&utm_campaign=guide

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

1 5

Java conquered the hearts of millions of developers with a

simple trick: it raised the level of abstraction. With the JVM,

we no longer have to care about OS specifics or memory

allocation. Frameworks like ORM continued this trend, giving

us the power to create much more complex software.

Business requirements quickly grew to exploit this new

approach to software. Now developers are spending

precious time integrating disparate technologies together

and repeating the same tasks from project to project:

passing data from DB to UI and back, implementing data

searches, defining access rights, configuring deployment,

and so on.

Of course, tools like Spring Boot can help you start projects

quicker, but after the initial project configuration is done,

you are left on your own again. And every inevitable

upgrade of an underlying technology means you need to

take care of API changes and regression testing.

The CUBA Platform addresses productivity challenges

by raising the abstraction to a new level. Data-aware UI

components, user-configurable data searches and access

control, integrated BPM, reporting, and a generic REST

API enable you to deliver functionality quickly with high-

level building blocks. CUBA Studio configures project

infrastructure, scaffolds data models and CRUD UI, and

enables WYSIWYG layout design — so you can focus on the

business logic in your favorite Java IDE instead of writing

boilerplate code.

With the CUBA Platform, you can once again stay ahead

of the ever-growing demands of the business. At the same

time, you do not lose in flexibility: almost any feature of the

platform can be overridden in your project.

WRITTEN BY ANDREY GLASCHENKO
HEAD OF CUBA PLATFORM TEAM, HAULMONT

Rapid Application
Development
for Java

An open source Java RAD framework with enterprise features out of the box, extensive
scaffolding, and open architecture.

CUBA Platform By Haulmont

CASE STUDY
STREAMLINING THE DEVELOPMENT CYCLE

Audimex AG was established in 1999 with a focus on custom

software development. The company has developed one of the world

leading Audit Management systems, selling it to blue chip companies

across all industries such as UniCredit Group, Schwarz Dienstleistung

KG and Daimler AG.

“Since day one we have been struggling to find the right framework

that would be flexible, open, and could cover common enterprise

needs, turning development from wasting time on boilerplate coding

to solving real business problems. Finally, we bumped into the CUBA

Platform in 2016. After a few weeks of evaluation, we realized that

CUBA is a ’silver bullet’ for enterprise applications development.”

MARKUS HÖVERMANN - CEO - AUDIMEX AG

STRENGTHS

NOTABLE CUSTOMERS

• 	 Start instantly: download CUBA Studio and have your

first application running in minutes.

• 	 Plug in advanced enterprise features to your project with

no effort.

• 	 Write code in a preferred Java IDE. Use Studio for

scaffolding and WYSIWYG design.

• 	 Deliver open and scalable applications based on

mainstream open source technologies.

• 	 Migrate easily: scaffold UI and data model on top of a

legacy application’s database.

• 	 IKEA Supply AG

• 	 Robert Bosch GmbH

• 	 Shanghai Pudong

Development Bank Co.

• 	 Deloitte

• 	 US Armed Forces Europe

• 	 Yieldmo

CATEGORY
Java framework

NEW RELEASES
Quarterly

OPEN SOURCE
Yes

WEBSITE www.cuba-platform.com BLOG cuba-platform.com/blogTWITTER @CubaPlatform

SPONSORED OP IN ION

OPEN SOURCE JAVA RAD FRAMEWORK
FOR ENTERPRISE APPLICATION DEVELOPMENT

https://www.cuba-platform.com/?utm_source=dzone&utm_medium=display&utm_campaign=guide-profile-web
https://www.cuba-platform.com/?utm_source=dzone&utm_medium=display&utm_campaign=guide-profile-web
https://www.cuba-platform.com/blog?utm_source=dzone&utm_medium=display&utm_campaign=guide-profile-blog
https://www.cuba-platform.com/blog?utm_source=dzone&utm_medium=display&utm_campaign=guide-profile-blog
https://twitter.com/CubaPlatform

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

1 6

Q U I C K V I E W

It is a fair statement, I think, to suggest that Java

developers spend as much—if not more—time

working through the bugs in their code in one

form or another than they do actually writing

the code. Ideally, those bugs will be sorted out

because the unit test suite caught them before

they reached production, but regardless of who,

what, or where, bugs are a fact of any software

developer’s life.

The Java platform has seen some serious changes since

its introduction to the world via the HotJava browser

at COMDEX in 1995. In the first release of the JDK,

the only debugging tool available was the text-based

debugger jdb—assuming you don’t count System.out.

println, of course. Since that time, however, and after a

few fits and starts, the Java platform has “bulked out”

its debugging capabilities in some serious ways. In

some cases, those enhancements came rather quietly,

hidden behind some of the more glitzy features of the

platform’s evolution.

Particularly if you’re a long-term Java developer like

me, it can be helpful to take a quick overview of what’s

available before diving back into the debugging process.

In particular, my goal is to avoid some of the more well-

known developer practices—such as logging or writing

unit tests—to focus more on what seem to be lesser-

known tools, technologies, and ideas for debugging

Java systems. Bear in mind, some of these tools are

more often categorized as “management” tools, but

ultimately, management and debugging both require

the same capabilities—visibility into the underlying

virtual machine. It’s only the purposes to which they

are put to use that really serve to distinguish between

“debugger” and “monitoring” tools.

With that, we begin.

JAVA MANAGEMENT EXTENSIONS (JMX)
The JMX API was one of the most fundamental

introductions into the Java platform from a debugging

perspective, yet for much of its early days, it was hailed

purely as a management and monitoring tool. In fact,

one of the key changes that came along with the JMX

API was the introduction of some core JMX MBeans

(managed beans) from within the JVM itself—in other

words, the custodians of the JVM at the time chose

to expose parts of the JVM’s internal workings as

monitorable assets. This, in turn, means that we can

use said assets as part of a debugging strategy.

Because each JVM implementation is free to expose

its own additional MBeans, additional ones may

be present beyond the ones discussed here, but at

a minimum, each compliant JVM implementation

is expected to expose beans around ClassLoaders,

memory-management facilities (usually across several

beans: GarbageCollector, Memory, MemoryManager,

and MemoryPool), and—most importantly, from a

debugging perspective—Threading. In particular,

the Threading MBean has several methods, such as

The State of
Debugging in Java

BY TED NEWARD
DIRECTOR OF DEVELOPER RELATIONS, SMARTSHEET

Debugging is more than just
logging.

Java instrumentation can be
used for both performance
monitoring and debugging.

The Java instrumentation
is available to use for any
tools, including custom
ones.

01

02

03

Q U I C K V I E W

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

1 7

findMonitorDeadlockedThreads(), getThreadInfo()

and dumpAllThreads(), that can be incredibly helpful

in tracking down deadlock situations. Similarly,

the application server you use, such as Tomcat, will

frequently offer a number of MBeans that can be used

to either monitor or debug what’s happening inside of

a Java application—fire up your application under your

favorite JMX-aware tool, such as jvisualvm or jconsole,

to get a sense of all of the MBeans that are exposed.

JDK COMMAND-LINE TOOLS
The JDK itself ships with several tools, many (if not

most) of which are labeled as “experimental” or

“unsupported,” largely because they have historically

been intended more as an example of what one could

do with the support the JVM provides, rather than

trying to be a fully bulletproofed tool. That said, the

list of tools provided is quite surprising, and many are

useful in their own right. As of Java 8, that list includes:

•	 jps: A simple command that lists all of the Java

processes currently running on the machine. It

returns the “JVMID,” an identifier that is often used

with other tools to uniquely identify this executing

JVM. Most often, the JVMID is the exact same as the

operating system’s process identifier, or PID, but it can

include hostname and port, so that a tool can connect

remotely to a running process, assuming the network

facilities permit such communication.

•	 jinfo: An “information dump” utility. When given a

JMVID, it will connect to the target JVM and “dump”

a large amount of information about the process’s

environment, including all of its system properties, the

command-line used to launch the JVM, and the non-

standard JVM options used (meaning the “-XX” flags).

•	 jcmd: A “command” utility that can issue a number

of different debugging/monitoring commands to

the target JVM. Use “jcmd <pid> help” to see a list of

commands that can be sent—one of the most useful

will be GC.heap_dump to take a snapshot of the entire

JVM heap, for offline analysis.

•	 jmap: Another “heap dump” utility that can not

only dump the JVM heap into the same format that

jcmd uses, but can also track and dump ClassLoader

statistics, which can be helpful to discover

ClassLoader class leaks.

•	 jhat: The “Java heap analyzer tool.” It takes a heap

dump generated by any of the other utilities and

provides a tiny HTTP-navigable server to examine

the contents. While the user interface isn’t amazing

and clearly hasn’t been updated in years, jhat has one

unique facility to it that is quite useful: the ability

to write OQL queries to examine the contents of the

heap without having to manually click through every

object.

•	 jstack: Does a Java thread stack dump of any running

JVM process. A critical first step to diagnosing any

thread-deadlock or high-contention errors in a

running JVM, even if that JVM is in production.

•	 jstat: A “Java statistics” utility. Run “jstat -options” to

see the full list of commands that can be passed to the

target JVM, most of which are GC-related.

The source code for these tools is even more important

than the tools themselves, because that leads us directly

into the last tidbit we have space and time to cover.

JDB SCRIPTING
The ubiquitous and “ancient” debugger, jdb, has a few

surprises in store for those who spend a little time

getting to know it—although the user interface, being

text-based, leaves a wee bit to be desired, the fact that

it is a text-based interface means that it can be scripted

by a text file.

Consider a simple Java application that does some

really trivial field manipulation before terminating:

public class App {

 private static int count = 0;
 private static String message = “”;

 public static void main(String... args) {
 while(true) {
 countandand;

 if (count < 10) {
 message = “I’m less than 10”;
 }
 else if (count > 20) {
 message = “I’m about to quit”;
 }

 if (count > 30)
 System.exit(0);
 }
 }
}

Assume for the moment that the bug is that the app

is supposed to terminate once the count field has

reached 21, not 31. Normally, from a Java IDE, we could

set the breakpoint on the line containing the System.

exit() method call, but if this is only happening in

production, it can be quite the fight to get the system

administrators to allow us to install a Java IDE on the

production machines (assuming it’s not in a cloud data

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

1 8

center somewhere); however, if the JDK is installed,

then jdb is there.

CUSTOM TOOLS
A recent survey by a Java tools vendor discovered that

almost a quarter of the Java developers surveyed had

built their own profiling tools. Although nobody would

ever suggest that one of these home-grown tools is

generally as useful as a commercial profiler, building

a small suite of specific-purpose one-off tools can be

immensely helpful. Thanks to the architecture of the

JDK, it’s straightforward to build debugging tools, as well.

The reason this is possible is simple: from roughly

JDK 1.2 through to Java5, the JVM has steadily grown

more and more “programmable” from a visibility

perspective, culminating in a critical feature in the

Java 5 release: the Java Platform Debug Architecture

(JPDA). Put succinctly, JPDA is a platform for building

tools and agents that can be connected to—or

sometimes even hosted within—the JVM to gain

that critical view. What’s more important to the Java

developer is that the cost of using the instrumentation

within the JVM is effectively nil—that is, the

instrumentation is “always on,” regardless of whether

a debugger is connected to it or not.

Most of the time, such a tool will be written against the

Java Debugger Interface (JDI), which lives in the com.

sun.jdi package and is documented at <<JDI-URL>>.

Thanks to the inclusion of the Nashorn engine as a part

of the JDK, coupled with the fact that Nashorn (like its

predecessor, Rhino) has full interoperability with any

Java API, it’s trivial to write debugger utilities using

JavaScript. Full discussion of the JDI is well beyond the

scope of this article, but most Java developers will find

it well worth the investment in time.

SUMMARY
The Java world is filled with a number of debugging

tools well beyond what comes straight out of the box

with the JDK. Chief among these will be the Java IDE

itself, and developers should spend time getting to

know what the IDE offers. Many, for example, offer the

ability to conditionally stop on a breakpoint based on

a runtime-evaluated expression; this would make our

earlier debugging example straightforward to diagnose

from the IDE, by setting a conditional breakpoint on

the System.exit method to examine the value of App.

count and either break (if it is a value other than the

expected 21) or continue execution without pausing.

Never look to invent new tools that already exist.

Certainly, the Java ecosystem is filled with tools that

provide powerful functionality—for example, in

addition to being a powerful programming language

in its own right, AspectJ’s ability to “weave” against

compiled bytecode and inject arbitrary Java code

provides an opportunity to “slip in” highly-focused

debugging utilities when necessary. For example, using

the above App example again, a developer familiar

with AspectJ could write a simple aspect that defines

a joinPoint on the call to System.exit within the App

class, and print the value of App.count before allowing

the execution to continue. This is just one of many

different ways to use AspectJ, and that, in turn, is just

one of a number of different tools.

Most of all, the key here is to “practice, practice,

practice.” Trying to learn how to use these tools while

in the heated moment of trying to fix a production-

stopping bug is not going to yield the best results;

in fact, it’s more likely to yield confusion and/or

misdirection, which is the last thing anybody wants

during a crisis. Create some code with bugs in it,

ignore the IDE, and investigate these tools as a way to

“test-drive” them. Get to know them before you need

them, and they’ll feel like trusted friends when the

time comes.

Ted Neward is the Director of Developer Relations at

Smartsheet, and a long-time MVB at DZone; he currently resides

in Redmond, WA, with his wife, two sons, cat, eight laptops, nine

tablets, eleven mobile phones, and a rather large utility bill.




Ultimately, management and

debugging both require the same

capabilities—visibility into the

underlying virtual machine. It’s

only the purposes to which they

are put to use that really serve to

distinguish between “debugger”

and “monitoring” tools.

https://twitter.com/tedneward
https://www.linkedin.com/in/tedneward/

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

1 9

1. Anonymous Inner Types
Anywhere you encounter an inner class is a good place
to consider using a lambda expression. For example:

list.sort(new Comparator<String>() {
 public int compare (String o1, String o2) {
 return o1.length() - o2.length();
 }
});

…is much more succinctly represented as:

list.sort((o1,o2) -> o1.length() - o2.length());

2. Comparators
Comparator has had a make-over that goes further
than making use of lambda expressions. Consider the
example above — although the Java 8 version is much
shorter than the original, it’s still not very readable. New
helper methods on Comparator, combined with method
references, can make it clear which property is being
used for sorting:

list.sort(Comparator.comparingInt(String::length));

With these helper methods, you’ll get the results in
ascending order unless you specify otherwise:

list.sort(Comparator.comparingInt(String::length).
reversed());

3. Classes With No State
Often you come across classes with names ending
in Util or Helper that contain static methods but no
state of their own. Now that interfaces support static
methods, these classes may be better as interfaces so
no one can accidentally sneak state into a type that
is only meant to contain functions. Comparator is a
perfect example of when static methods on interfaces
can be useful and powerful.

Similarly, you may come across abstract classes with no
state, only methods with behavior and abstract methods
that are designed to be overridden. If there’s no state,

these can be converted to interfaces. Why? If you’re
fortunate enough to only have a single abstract method
in your class, you can turn it into a FunctionalInterface
and implement this type with a lambda expression.

4. Nested for/if Statements
The Streams API was designed to give us much greater
flexibility when querying collections. Now, when you see
code like this:

List<Field> validFields = new ArrayList<Field>();
for (Field field : fields) {
 if (meetsCriteria(field)) {
 validFields.add(field);
 }
}
return validFields;

…you should be thinking of using the Streams API instead.
In this case, a filter and collect is a suitable replacement:

return fields.stream()
 .filter(this::meetsCriteria)
 .collect(Collectors.toList());

Sometimes, for loops with an inner if statement may
be refactored to anyMatch or findFirst:

for (String current : strings) {
 if (current.equals(wanted)) {
 return true;
 }
}
return false;

…can be replaced with:

return strings.stream()
 .anyMatch(current -> current.
equals(wanted));

And:

for (String current : strings) {
 if (current.equals(wanted)) {
 return current;
 }
}
return null;

…can be:

return strings.stream()
 .filter(current -> current.
equals(wanted))
 .findFirst()
 .orElse(null);

That orElse null looks pretty ugly. We’ll come back
to that later.

5. Multiple Operations on a
Collection
While we try to be efficient in our code, it’s often
easier to perform multiple operations on one or
more collections to get the result we want. Consider
the following:

// collect messages for logging
List<LogLine> lines = new ArrayList<>();
for (Message message : messages) {
 lines.add(new LogLine(message));
}
// sort
Collections.sort(lines);

// log them
for (LogLine line : lines) {
 line.log(LOG);
}

The separation of the steps makes it clear what’s
happening, but the Collections.sort call suggests
we can use the Streams API instead. In fact, if we do, we
can combine these operations into a single stream:

messages.stream()
 .map(LogLine::new)
 .sorted()
 .forEach(logLine -> logLine.log(LOG));

This cuts out the intermediate collection and is not only
more readable, but should also generally perform faster.

6. Using an Iterator to Remove
Elements
Pre-Java-8 code might contain something like this:

Iterator<String> iterator = strings.iterator();
while (iterator.hasNext()) {
 String current = iterator.next();
 if (current.endsWith(“jnilib”)) {
 iterator.remove();
 }
}

Now, this code can be condensed down to:

strings.removeIf (current -> current.
endsWith(“jnilib”));

Not only is this shorter and more readable, but it usually
performs better, too.

7. Null Checks
NullPointerExceptions are the bane of a Java
developer’s life, and it’s not uncommon to see null
checks scattered around the code just to make sure we
don’t encounter one. The introduction of Optional
means we can be much more explicit about the
expected return types of a method and eliminate
unnecessary null checks. Imagine the last code snippet
from Section 4 was inside a method like:

public static String findString (String wanted)
{
 List<String> strings = new ArrayList<>();
 return strings.stream()
 .filter(current -> current.
equals(wanted))
 .findFirst()
 .orElse(null);
}

Any code that called findString would have to check if
the value was null, and if so take appropriate action:

String foundString = findString(wantedString);
if (foundString == null) {
 return “Did not find value” and
wantedString;
} else {
 return foundString;
}

This is ugly and tedious. If we update the findString
method to return an Optional:

public static Optional<String> findString
(String wanted) {
 List<String> strings = new ArrayList<>();
 return strings.stream()
 .filter(current -> current.
equals(wanted))
 .findFirst();
}

…then we can deal with the case of the value not being
found much more elegantly:

return findString (wantedString).orElse(“Did not
find value” and wantedString);

Code
Smells Java
8 Can Fix
TRISHA GEE
DEVELOPER ADVOCATE, JETBRAINS

Java 8 has been adopted as the de facto JVM for
most applications now, but that doesn’t mean
existing code makes the most of it. Here are some
signs of code that needs modernization.

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html
https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html
https://docs.oracle.com/javase/8/docs/api/java/lang/FunctionalInterface.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html

SPONSORED OP IN ION

Production problem, can’t reproduce it, need answers ?

Instantly understand why Java code breaks in production

FusionReactor goes beyond traditional APM tools to give
you unrivaled insight into how your Java code performs and
executes in production

FusionReactor doesn’t just monitor and put the burden on you to
figure things out. FusionReactor puts you in control, so that you can
instantly isolate production issues and performance bottlenecks with
our integrated low-overhead Debugger, Java Performance Profiler and
Memory Analyzer. Plus proactively improve application resilience
with FusionReactor’s unique Crash Protection capability.

No other monitoring solution gives you the same level of depth,
insight or control of your Java applications in production.

www.fusion-reactor.com

FusionReactor - Find it. Fix it. Prevent it.

© Copyright 2017, Intergral GmbH. All rights reserved. All trademarks, names, logos referenced, belong to their respective companies.

Start Free Trial

https://www.fusion-reactor.com/java-monitoring/?utm_source=Dzone&utm_medium=Guide&utm_campaign=Java2017

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

2 1

According to a recent DZone APM Guide, it was found

that the most time-consuming part of fixing production

issues is finding the root cause, followed closely by being

able to reproduce the problem. It’s hardly surprising,

as today’s distributed application environments and

architectures are more complex than ever, and this

only adds to the difficulty when trying to pinpoint

software problems. Where do you start looking? Log

files maybe…? Logs are painstaking, may not contain

the information you actually need, or may not even be

available, so good luck with that.

When something breaks or performs poorly in

production, developers need real-time insight and

transparency into what the application is actually doing

at the point that it’s breaking – in production.

Imagine a production environment where you had all

the core functionality and features available from your

favorite developer QA and analysis tools, maybe the

Eclipse debugger or JProfiler line performance profiler

or JVisualVM for memory heap analysis. Imagine, if

these features were combined into a single tool, which

is simple to setup, safe to use, and runs in production

without any significant impact to performance.

You don’t have to imagine it: FusionReactor includes a

suite of built-in, low-overhead, production-grade analysis

tools to give you all the detailed information needed to

“deep-dive” issues in production environments – plus all

the core monitoring features you would expect, like real-

time metrics, user experience monitoring, and alerting.

Cut root cause analysis time down to size, join the

revolution and 5000and other companies who are using

and benefiting from what FusionReactor can offer.

WRITTEN BY DAVID TATTERSALL
CEO/CO-FOUNDER, INTERGRAL GmbH

Break the Mold: A
New Way to Isolate
Issues in Production

FusionReactor goes beyond traditional APM tools to give you unrivaled insight into how your Java

code performs and executes in production environments.

FusionReactor By Intergral GmbH

CASE STUDY
Auto Europe have been using FusionReactor APM for several years to

pinpoint application stability and performance related issues. Using

FusionReactor was like switching the lights on, as it provided so much

insight into exactly what was happening. We immediately identified

several performance bottlenecks which until then had been invisible

to us. FusionReactor allowed us to not only see how our app was

performing, but also how it interfaced across all levels of the enterprise.

We found FusionReactor’s Crash Protection feature essential to bring

things under control. The invaluable insights gained from CP alerts

combined with real time metrics allowed us to address the immediate

problems and help us keep things running smoothly.

FORREST HANVEY - DEVELOPMENT MANAGER - AUTO EUROPE

STRENGTHS

NOTABLE CUSTOMERS

• 	 Deep, real-time monitoring for Java applications

• 	 Production safe, low-overhead debugger, profiler, and

memory analyzer

• 	 Instantly isolate production issues like you would on your

test server

• 	 Crash Protection capability to increase application resilience

• 	 Full featured monitoring capability - full alerting and

metric analysis

• 	 On-premise and SaaS version available plus 14 Day Free Trial

• 	 Auto Europe

• 	 Bullhorn

• 	 Primoris Services

• 	 JustFab

• 	 Hasbro

• 	 UPS

CATEGORY
APM for Developers

NEW RELEASES
Monthly

OPEN SOURCE
No

WEBSITE www.fusion-reactor.com BLOG fusion-reactor.com/blogTWITTER @Fusion_Reactor

SPONSORED OP IN ION

https://www.fusion-reactor.com/
https://www.fusion-reactor.com/
https://www.fusion-reactor.com/blog/
http://www.fusion-reactor.com/blog/
https://twitter.com/Fusion_Reactor

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

2 4

Microservices are everywhere, or at least so it seems.
The hype has reached such a point that for a couple of
conferences I am part of, attendees have asked for fewer
talks unabashedly extolling microservices. As the title
suggests, my aim here is to try to cut through some of
the hype in favor of balance, brevity, simplicity, and
pragmatism. Rest assured I plan to stay as far away as
possible from anything that looks like a marketing pitch
or an academic sermon. In the end, my hope is that you
will be able to answer for yourself if microservices can
benefit you, and know what Java tools you may need to
adopt this style of developing systems.

WHAT’S IN A NAME?
Microservices talks and write-ups usually start by defining
microservices. The reason for this is that there still isn’t any
industry consensus on what microservices are. This reality
makes practical adoption by blue collar IT organizations
extremely difficult. Even microservices terms seem deeply
entangled in marketing concerns. The irony is such that
“microservices” need not be so “micro” and need not be just
“services.” Similar problems exist for the term “monolith” to
describe a system that doesn’t follow the microservices style.
The term has needlessly negative connotations in a computing
context when a far more neutral term like a “cohesive” or
“integrated” system could have done the job just as well. The
reality is that there are very likely at least just as many systems
that make sense as monoliths as there are systems that are
clearly appropriate for microservices.

The very simple core concept behind microservices is about
modularizing complex systems using distributed computing.
Microservices decompose larger systems into smaller
independently deployable parts using the network as a strict
boundary of separation. As long as this decomposition is what

you are trying to accomplish, you are doing microservices;

the rest is insignificant nuance. In this sense, microservices

are just a rebranding of computing concepts that have been

around for a long time. These same concepts have manifested

themselves many times over the years in CORBA, Jini, RMI,

EJB 1/2, COM/DCOM, and OSGi. The last reincarnation of these

concepts is SOA.

Indeed, despite what some proponents claim, microservices

have far more similarities to SOA than they have differences.

A plainspoken name for microservices could simply be “SOA

II,” “Son of SOA,” or “SOA Done Right.” By far the easiest path to

understanding microservices is simply contrasting it with what

the most ardent proponents claim are significant differences

with the relatively well-established concept of SOA. Some

proponents of microservices do begrudgingly admit that part of

the motivation for rebranding SOA is the negative association

with SOAP and ESB.

Consequently, the most significant difference between SOA and
microservices is that proponents stress REST instead of SOAP.
By the same token, microservices proponents also stress the
purported evils of centralized orchestration via ESBs. In reality,
the choice of communication protocols between distributed
components is just an implementation detail. Proponents
recognize, for example, that asynchronous messaging (such
as using JMS) is a significant alternative to synchronous REST
calls when greater reliability and resiliency is desired. The
most ardent microservices proponents also tend to stress the
“micro” part in an effort to differentiate from SOA. In reality,
the size of a microservice only matters to a certain extent, and
there is a point of diminishing returns to breaking a system
down into too many services that are too small.

Microservices proponents will often cite high degrees of
automated test coverage, DevOps, and Continuous Integration/
Continuous Deployment (CI/CD) as strict prerequisites. In

Separating Microservices

Hype and Reality for

Pragmatic Java Developers

BY REZA RAHMAN
SENIOR MANAGER/ARCHITECT, CAPTECH VENTURES, INC.

Microservices are the newest
incarnation of valuable ideas
with a long history, the last major
incarnation being SOA.

It is important to cut through the
hype and carefully evaluate the
pros and cons of microservices.

Microservices are not necessarily
for everyone and are not
necessarily all-at-once. Monoliths
can be the right architecture for
many applications.

Even when adopting
microservices, the best way to
avoid major pitfalls is to stay
away from overly fine-grained
modules.

01

02

03

04

Q U I C K V I E W

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

2 5

practice, these factors are just about as important as they
are for monolithic systems. They only become do-or-die
necessities to master in the case of the purist style systems
broken down into a large number of fine-grained services. More
infrequently, cloud solutions, Docker, and product features like
fat-jars, dynamic discovery, circuit breakers, metrics, etc. are
co-sold with microservices. The practical relationship between
microservices and these product offerings is much like the
relationship between SOA and ESBs. Just as ESBs are only
needed for some SOA systems, it is possible to write perfectly
fine microservices systems that do not use any of these things.

THE PROMISE
SOA focused on the promises of reuse and interoperability.
Microservices, understandably, do not, as SOA often failed to
realize the benefits of reuse in particular. Carefully evaluating
the primary benefits that proponents cite is key to whether you
should adopt microservices or not.

TEAM SIZE
An ugly truth of software engineering is that code quality
diminishes over time, and maintaining a code base becomes
increasingly difficult. In addition, a curious observation many
of us have had is that code quality suffers as the size of the
code base and the number of developers working on the code
base grow. With agile development in particular, scaling teams
beyond a certain size is a real challenge. Just imagine what
a daily standup looks like with more than about six to ten
developers. This is the most powerful and practical reason for
adopting microservices for most of us. When your team and
code size reaches a clear point of diminishing returns, an easy
way to regain effectiveness is by breaking the system down
into modules and giving them to separate smaller teams.

What this also means, however, is that most blue-collar IT
organizations probably won’t get much out of microservices
until the development team reaches a certain size. Even while
adopting microservices, you are likely to get the most benefits
if each team working on a given module is in the neighborhood
of about six to ten developers.

AGILITY
The point behind microservices and agility is simple on the
surface. The smaller the module, the faster it can deploy through
CI/CD, especially when including many automated integration
tests and third-party libraries. Since modules are independently
developed and deployed, making a single change is easier. The
speed of making changes is a key reason for companies like
Netflix, Google, and Amazon to adopt microservices.

For the rest of us, things are not that clear cut. While there is
merit to the agility argument, the issue is that microservices
dogma taken too far can actually hinder productivity for most
organizations by introducing complexity and overhead at the
overall systems level.

SCALABILITY
The scalability argument cited by microservices proponents
is also fairly simple on the surface. The idea is that more
dedicated hardware can be allocated to each module, all the
way down to a separate database. This allows for almost
limitless scalability. In fact, this is the only way companies like
Netflix, Google, and Amazon can reach Internet scale.

The reality for most applications is that a monolith on a
horizontally scaled load-balanced set of machines with a single
logical database already goes a long way. For these applications,
the additional scalability that comes with microservices just
isn’t needed since they will never reach anything approaching
Internet scale.

POLYGLOT PROGRAMMING
This argument is a variant of the technology interoperability
point SOAP/SOA promoted. The idea is that each module can
be developed using a separate technology using a common
communication protocol like REST.

Much like in the SOA era, this is not likely to be a compelling
advantage for most blue-collar IT organizations that tend to
try hard to agree on a limited technology set in order to make
vendor, skill set, and personnel management easier.

THE REALITY
Microservices are by no means a free lunch. They come with

disadvantages that you will need to deal with if you are to

adopt microservices. A key microservices paradox to notice

is that the more “micro” your modules, the worse these

disadvantages become.

•	 Deploying a single module can be efficient on its own. The
problem is that at a system level, administration, deployment,
and monitoring is a lot harder for distributed systems than
it is for a monolith. Imagine having to manage a single
standalone application versus many applications that have
complex interdependencies that only manifest themselves at
runtime — possibly in the worst ways and at the worst time.
The complexity gets exponentially worse when the system is
over-granularalized to the point that a single enhancement
results in changes across effectively interdependent but
completely independently deployable modules. The reality
of distributed systems is that they force higher skill, tooling,
and automation requirements for both development and
operations teams.

•	 Distributed systems make testing, debugging, reliability,
and consistency harder. When a piece of functionality
depends on making a remote invocation that may result in
other indeterminate remote invocations, an integration test
will require that all these interdependent pieces of code be
running and functioning correctly. For the same reasons,
hunting down a bug is a lot harder in distributed systems.
Ensuring consistency in a monolith is easy through local
transactions. When a single unit of work is spread across
REST invocations, it is no longer possible to use transactions
to ensure consistency. Instead, you will have to write
significantly more complex error handling code to try to
maintain consistency yourself. The easiest way to minimize
these issues is writing coarse-grained modules that are
mostly independent and have few, if any, interactions with
other remote modules.

•	 Distributed systems result in a lot of code and data
duplication. At the bare minimum, remote invocations
result in virtually identical DTOs (Data Transfer Objects) on
each side of the invocations. At worst, microservices can
result in large parts of the domain model to be duplicated

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

2 6

across modules, right down to the database. Besides
maintenance overhead, this can easily result in bugs rooted in
inconsistencies across duplicates.

•	 A recent conference speaker used the term “distributed
big ball of mud” to refer to a possible outcome of adopting
microservices. The issue is that while adopting microservices
can slow down code entropy, it can’t actually stop it directly.
For teams that already have difficulty maintaining reasonable
code quality, microservices can make matters worse by
making it easier to introduce poor quality in addition to the
inherent complexities of distributed systems. Just imagine
having to maintain poor quality distributed code written by
an unfamiliar developer, team, and technology. The right time
to think about microservices is when you are sure the team is
already capable of writing reasonable monoliths.

•	 Anyone considering microservices should have a solid
understanding of the “fallacies of distributed computing”
— developed at Sun Microsystems in the late nineties. The
fallacies remind us that it is foolish to overlook the downsides
of networks. Network I/O is one of the slowest and most
unreliable things you can do in computing. You can never
count on infinite bandwidth, networks are often managed by
different administrators, network configurations can change
without your knowledge, larger networks increase the surface
area for security vulnerabilities, and so on. Monolithic systems
simply don’t have to contend with these downsides. On the
other hand, the more fine-grained microservices you have, the
more obvious the fallacies of distributed computing become.

THE BOTTOM LINE
Ultimately, only you can decide whether microservices are
right for you by weighing the pros and cons in the context of
your organization. That said, it is certainly possible to attempt
some general observations for what they are worth.

•	 A great number of systems in blue-collar IT organizations
are probably fine as monoliths. Such systems may even be
in the comfortable majority. The benefits of microservices
do not outweigh the costs for these systems. It is wise to
start systems as monoliths and grow them to microservices
when necessary. If modularity is always kept in mind in
a monolith, natural module boundaries are far easier to
identify. Modularity can be enforced within monoliths using
simple Java package names before the time becomes right for
distributed modules.

•	 For projects that can benefit from microservices, it is still a
good idea to stay away from fine-grained services to avoid the
worst disadvantages of microservices. What makes the most
sense is to break these systems down into sizable sub-systems
with distinct sets of business users. An example would be a
larger insurance system that is broken down into point-of-sale,
data capture, underwriting, policy management, payments,
customer service, reporting, archival, etc. sub-systems. This is
not too different from what was done in the SOA era.

•	 The fine-grained services approach most microservices
proponents espouse, where you would see dozens of distributed
remote services comprising an application, like account service,
product service, user service, or order service, is an anti-pattern
for most of us. There are a small handful of companies that

benefit from this level of granularity. These are companies that
truly require internet scale and ultra fast rates of change. These
companies also have the manpower and resources to effectively
deal with the downsides of microservices.

JAVA MICROSERVICES TOOLS LANDSCAPE
Before considering any tools whatsoever, it is important
to realize that microservices first and foremost are about
architecture. For pragmatic approaches to microservices, any
decent stack that supports REST, JSON, and messaging is fine.
For Java developers, this certainly includes vanilla Java EE or
Spring. The same can be said of the Lightbend stack: Play, Akka,
and Lagom. And yes, Java EE application servers, especially the
ones supporting just the Java EE Web Profile, are just fine for
coarse-grained modules that look like SOA-style sub-systems.

Let’s assume you’ve decided to go the fine-grained services
route. You still have many options as a Java developer. For
fine-grained services, a fat jar solution makes more sense than
an application server model. In the Spring ecosystem, Spring
Boot is a popular choice for going this route (though it should
be noted that Spring Boot can make general sense in terms of
cutting down boilerplate Spring configuration even if writing
a monolith). Dropwizard is another popular fat jar solution for
Java developers. There are many options for Java EE developers
too, including WildFly Swarm, KumuluzEE, Paraya Micro,
WebSphere Liberty (yes, WebSphere Liberty supports modular
fat-jars), and TomEE embedded. These Java EE centric solutions
collaborate through the MicroProfile initiative.

Going down this path means that you may eventually need
features like dynamic discovery, circuit breakers, metrics/health-
checks, client-side load-balancing, and so on to try to offset the
downsides of distributed computing. Nearly every fat jar solution
I mentioned above supports many if not all these features.

Docker and cloud solutions (particularly PaaS) are often
positioned as absolute necessities for microservices. The reality
is that while Docker and cloud platforms may or may not make
sense regardless of the type of architecture you have, they only
become do-or-die necessities in case of very large, complex
systems comprising of many fine-grained microservices.
The great news is that the tools I’ve mentioned work rather
well with Docker and the cloud, including Java EE application
servers or old school Spring framework applications.

SUMMARY
Microservices are the newest incarnation of valuable ideas
with a long history, the last major incarnation being SOA. It
is important to realize that microservices are not necessarily
for everyone and not necessarily all-at-once. The great news
is that the Java ecosystem has stepped up to support even the
likely niche of fine grained microservices.

Reza Rahman is a long-time consultant now working at CapTech,

formerly a Java technologist at Oracle. Reza has over a decade of

experience with technology leadership, enterprise architecture,

development, and consulting. He has been working with Java EE

technology since its inception. Reza has developed enterprise systems for

several well-known companies like eBay, CapitalOne, and AAA using Java

EE and Spring. He is also the author of the popular book EJB 3 in Action.





https://twitter.com/reza_rahman
https://www.linkedin.com/in/javareza/

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION2 7

Diving Deeper
INTO JAVA

TOP #JAVA TWITTER FEEDS
To follow right away

@arungupta

@AdamBien

@jboner

@starbuxman

@myfear

@springrod

@trisha_gee

@mreinhold

@mariofusco

@javinpaul

Java Off Heap javaoffheap.com

Groovy Podcast groovypodcast.podbean.com

Java Pub House javapubhouse.com

Program Creek programcreek.com

Java Source java-source.net

Baeldung baeldung.com

JAVA-RELATED ZONES
Learn more & engage your peers in our Java-related topic portals

JAVA PODCASTS

JAVA WEBSITES

Java dzone.com/java
The largest, most active Java developer community on the web.

With news and tutorials on Java tools, performance tricks, and new

standards and strategies that keep your skills razor-sharp.

Web Dev dzone.com/webdev
Web professionals make up one of the largest sections of IT audiences;

we are collecting content that helps web professionals navigate in a

world of quickly changing language protocols, trending frameworks, and

new standards for user experience. The Web Dev Zone is devoted to all

things web development—and that includes everything from front-end

user experience to back-end optimization, JavaScript frameworks, and

web design. Popular web technology news and releases will be covered

alongside mainstay web languages.

DevOps dzone.com/devops
DevOps is a cultural movement, supported by exciting new tools, that is

aimed at encouraging close cooperation within cross-disciplinary teams

of developers and IT operations/system admins. The DevOps Zone is

your hot spot for news and resources about Continuous Delivery, Puppet,

Chef, Jenkins, and much more.

TOP JAVA REFCARDZ

Java EE Security Essentials
dzone.com/refcardz/getting-started-java-ee

This newly updated Refcard begins by introducing some common terms and

concepts related to Java EE security such as identity stores and authentication

mechanisms. We then explore authentication authorization, web module security,

EJB module security, and application client security with in-depth examples.

Microservices in Java
dzone.com/refcardz/learn-microservices-in-java

This Refcard turns concepts into code and lets you jump on the design and runtime

scalability train right away – complete with working Java snippets that run the

twelve-factor gamut from config to service registration and discovery to load

balancing, gateways, circuit breakers, cluster coordination, security, and more.

Java Containerization
dzone.com/refcardz/java-containerization

Java and Docker = separation of concerns the way it was meant to be. This

Refcard includes suggested configurations and extensive code snippets to get

your Java application up and running inside a Docker-deployed Linux container.

http://www.twitter.com/arungupta
http://www.twitter.com/arungupta
http://www.twitter.com/AdamBien
http://www.twitter.com/jboner
http://www.twitter.com/starbuxman
http://www.twitter.com/myfear
http://www.twitter.com/springrod
http://www.twitter.com/trisha_gee
http://www.twitter.com/mreinhold
http://www.twitter.com/mariofusco
http://www.twitter.com/javinpaul
http://www.javaoffheap.com/
http://groovypodcast.podbean.com
http://partiallyderivative.com/
http://www.dataversity.net/
http://java-source.net/
http://www.baeldung.com/
https://dzone.com/java-jdk-development-tutorials-tools-news
https://dzone.com/web-development-programming-tutorials-tools-news
https://dzone.com/devops-tutorials-tools-news
https://dzone.com/refcardz/getting-started-java-ee
https://dzone.com/refcardz/getting-started-git
https://dzone.com/refcardz/learn-microservices-in-java
https://dzone.com/refcardz/continuous-delivery-patterns
https://dzone.com/refcardz/java-containerization
https://dzone.com/refcardz/java-containerization
https://dzone.com/refcardz/learn-microservices-in-java
https://dzone.com/refcardz/getting-started-java-ee
http://www.programcreek.com/
http://java-source.net/
http://www.baeldung.com/
http://www.javaoffheap.com/
http://www.javapubhouse.com/
http://groovypodcast.podbean.com

SPONSORED OP IN ION

http://itextpdf.com/itext-developer-platform

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

2 9

We are looking for great Java developers with ideas for

applications that work on top of iText 7. Through the

iText Developers platform, we offer sales and marketing

for third-party applications with revenue sharing.

iText has nearly a decade of commercial sales and

marketing experience, and over fifteen years of

development experience with Java. We have grown our

business from strictly Open Source to an annual revenue

of 10 million Euros in the past nine years. We want to put

that experience to work for you — by selling third-party

iText 7 add-ons through our iText Developer platform.

HOW DOES IT WORK?
You come up with a great idea for an iText 7 add-on, and

work out a proof of concept. Then apply on our website

to be considered. We will choose products that we

believe fit into a scalable sales segment, and work with

you on how we can market and sell your add-on as an

iText product, with revenue sharing.

WHY BECOME PART OF THE PLATFORM?
The platform offers you, Java developers, the chance

to monetize your application projects that work with

iText 7. It also leaves the sales and marketing skills

to professionals that you do not have to invest in.

Interested in learning more? Check out our website and

apply! http://itextpdf.com/itext-developer-platform

Want to become our next partner? Apply today!

Have a Great Idea

for an Application?

We Can Help!

Through the iText Developer Platform, we engage the developer community strategically, allowing both parties

to focus on their strengths in bringing applications to market – RAF HENS, DIRECTOR, PRODUCT MANAGEMENT

STRENGTHS

NOTABLE CUSTOMERS

• 	 Allow developers to focus on creating

great applications, while we focus on

adding them into our sales and marketing

machine.

• 	 Leverage 20 years of experience in the PDF

industry, by building your application on

top of iText 7

• 	 Reach the Development community by

aligning your product with the iText brand

iText is a trusted house name in PDF

manipulation, including more than half of

the Fortune 50.

CATEGORY
A development platform

for PDF applications.

NEW RELEASES
As needed

OPEN SOURCE
No

WEBSITE itextpdf.com/itext-developer-platform BLOG itextpdf.com/posts/allTWITTER @itext

SPONSORED OP IN ION

iText Development Platform By iText

CASE STUDY - PDF2DATA WITH DUAL LAB

The first iText Development Platform partner was Dual Lab, who created

the pdf2Data add-on. The application allows you to capture the data in

PDF documents by programmatically extracting information that allows

users to choose the information that they want to keep from PDFs, such

as Name, Email Address, Product interest, and more, and add them to

their database. This is a crucial technology for many businesses looking

to programmatically extract information from their documents. Dual Lab

worked with iText to create an add-on that offered a new capability to the

iText 7 platform, and we launched the product in April 2017 for commercial

purchase. Dual Lab offered a short testimony on the partnership:

“We are very glad to partner with iText for distributing pdf2Data across the globe.

This allows us to focus on what we do best — developing innovative software, while

iText provides a recognized technology and has great experience in international

marketing and sales. It’s a win-win." Interested in becoming our next partner?

Apply today!

WRITTEN BY RAF HENS
DIRECTOR, ITEXT

http://itextpdf.com/itext-developer-platform
http://itextpdf.com/itext-developer-platform
http://itextpdf.com/itext-developer-platform
http://itextpdf.com/itext-developer-platform
http://itextpdf.com/posts/all
http://itextpdf.com/posts/all
https://twitter.com/itext

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

3 0

I once heard a colleague of mine make the following

statement at a conference:

If you are an Android developer and you do not use

WeakReferences, you have a problem.

No doubt one could argue whether WeakReferences are

that relevant or not, but underneath them is one of the

biggest problems in the Java world nowadays. Let’s have a

walk in the world of the Memory Leak, and come back to

the topic of the different types of references later.

MEMORY LEAKS
Memory leaks are a silent killer. They can start small and live

during an initial incubation time without anybody realizing it. With

time, they keep growing, piling up, and accumulating. When you

realize they’re there, it’s already too late: your entire code base

is scattered with memory leaks, and finding a solution takes an

enormous amount of effort. Therefore, it is a good investment to

learn how this happens at an early stage in your career. Let’s start

from the beginning:

WHAT IS A MEMORY LEAK?
A memory leak happens when an object that is no longer used

is still referenced in-memory by another object. It is particularly

troublesome in the Android world, since Android devices have a

very limited amount of memory, sometimes as little as 16 MB. As

much as you may think this is enough to run an application, believe

me: you can run over this limit rather quickly.

Eating up the available memory is the most direct result, but

there’s another interesting side effect of running low on memory:

the Garbage Collector (GC) will start triggering more frequently.

When the GC triggers, the world stops. An app needs to render

a frame every 16 milliseconds, and with the Garbage Collector

running, this framerate can be compromised.

HOW DO LEAKS HAPPEN?
I have been on both sides of the fence in an interview for an Android

app development job. You feel more secure when you have a strong

candidate in front of you, rather than the other way around. I have

been asked how to prevent memory leaks in the real world across

several interviews. That made me think: would it not be a more

interesting conversation to talk about how you can create a memory

leak? It can also better prove a developer’s theoretical knowledge on

the subject. Let’s see how we could provoke a few memory leaks:

•	 Do not close an open stream. We typically open streams to

connect to database pools, to open network connections, or to

start reading files. Not closing them creates memory leaks.

•	 Use static fields for holding references. A static object is always

in memory. If you declare too many static fields for holding

references to objects, this will create memory leaks. The bigger

the object, the bigger the memory leak.

•	 Use a HashSet that is using an incorrect hashCode() (or not using

one at all) or equals(). That way, the HashSet will start increasing

in size, and objects will be inserted as duplicates! Actually, when

I was asked in interviews “what is the purpose of hasCode() and

equals() in Hash Sets” I always had the same answer: to avoid

memory leaks! Maybe not the most pragmatic answer, but it’s

equally true.

If you are an Android developer, the possibility of memory leaks

increases exponentially. The object Context is mainly used to access

and load different resources, and it is passed to many classes and

methods as a parameter.

Imagine the case of a rotating screen. In this scenario, Android

destroys the current Activity, and tries to recreate the same state

before the rotation happened. In many cases, if let’s say you do not

want to reload a long Bitmap, you will keep a static reference that

avoids the Bitmap being reloaded. The problem is that this Bitmap

is generally instantiated in a Drawable, which ultimately is also

linking with other elements, and gets chained to the Context level,

A Troublesome

Legacy: Memory

Leaks in Java

Memory leaks are one of the

silent killers in the software

industry.

Sometimes not noticeable at

an early stage, memory leaks

accumulate over time and

end up lowering performance

and acting as a bottleneck in

software quality.

This article explores the

memory leaks in Java and

Android, how they happen and

how you can prevent them.

01

02

03

Q U I C K V I E W

BY ENRIQUE LÓPEZ MAÑAS
GOOGLE DEVELOPER EXPERT

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

3 1

leaking the entire class. This is one of the reasons why one should

be very careful with static classes.

HOW CAN WE AVOID MEMORY LEAKS?
Remember how we previously talked about the WeakReference?

Let’s take a look at the different types of references available in Java:

•	 Normal: This is the main type of reference. It corresponds to the

simple creation of an object, and this object will be collected

when it will no longer be used and referenced. It’s just the

classical object instantiation: SampleObject sampleObject = new

SampleObject();

•	 Soft: This is a reference that’s not strong enough to keep an

object in memory when a garbage collection event is triggered,

so it can be null any time during execution. Using this reference,

the garbage collector decides when to free the object memory

based on the demand of the system. To use it, just create a

SoftReference object passing the real object as a parameter in

the constructor, and call the SoftReference.get() to get the object:

SoftReference<SampleObject> sampleObjectSoftRef = new

SoftReference<SampleObject>(new SampleObject()); SampleObject

sampleObject = sampleObjectSoftRef.get();

•	 Weak: This is like SoftReferences, but weaker.

•	 Phantom: This is the weakest reference; the object is eligible

for finalization. This kind of reference is rarely used and the

PhantomReference.get() method always returns null. This is for

reference queues that don’t interest us at the moment, but it’s

useful to know that this kind of reference is also provided.

These classes may be useful if we know which objects have a lower

priority and can be collected without causing problems in the

normal execution of our application. Let’s see how to use them:

public class MainActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 new MyAsyncTask().execute();
 }

 private class MyAsyncTask extends AsyncTask {
 @Override
 protected Object doInBackground(Object[] params) {
 return doSomeStuff();
 }
 private Object doSomeStuff() {
 //do something to get result
 return new MyObject();
 }
 }
}

Non-static inner classes are largely used in Android because they

allow us to access outer classes’ IDs without passing their references

directly. However, Android developers will often add inner classes to

save time, unaware of the effects on memory performance.

A simple AsyncTask is created and executed when the Activity is

started. But the inner class needs to have access to the outer class,

so memory leaks occur every time the Activity is destroyed, but the

AsyncTask is still working. This happens not only when the Activity.

finish() method is called, but even when the Activity is destroyed

forcibly by the system for configuration changes or memory needs, and

then it’s created again. AsyncTask holds a reference to every Activity,

making it unavailable for garbage collection when it’s destroyed.

Think about what happens if the user rotates the device while the

task is running: the whole instance of Activity needs to be available

all the time until AsyncTask completes. Moreover, most of the

time we want AsyncTask to put the result on the screen using the

AsyncTask.onPostExecute() method. This could lead to crashes

because the Activity is destroyed while the task is still working and

views references may be null.

So what is the solution to this? If we set the inner class as a static

one, we cannot access the outer one, so we need to provide the

reference to that. In order to increase the separation between the

two instances and let the garbage collector work properly with the

Activity, let’s use a weaker reference to achieve cleaner memory

management. The previous code is changed to the following:

public class MainActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 new MyAsyncTask(this).execute();
 }
 private static class MyAsyncTask extends AsyncTask {
 private WeakReference<MainActivity> mainActivity;

 public MyAsyncTask(MainActivity mainActivity) {
 this.mainActivity = new
WeakReference<>(mainActivity);
 }
 @Override
 protected Object doInBackground(Object[] params) {
 return doSomeStuff();
 }
 private Object doSomeStuff() {
 //do something to get result
 return new Object();
 }
 @Override
 protected void onPostExecute(Object object) {
 super.onPostExecute(object);
 if (mainActivity.get() != null){
 //adapt contents
 }
 }
 }
}

This way, the classes are separated and the Activity can be collected

as soon as it’s no longer used, and the AsyncTask object won’t find

the Activity instance inside the WeakReference object and won’t

execute the AsyncTask.onPostExecute() method code.

Together with using References properly, we can use these methods

to avoid provoking memory leaks in our code:

•	 Avoid using non-static inner classes in your Activities, use a

static inner class and make a WeakReference.

•	 When you have the option to use Context, try using Activity

Context instead of Application Context.

•	 In general, never keep long-term references to any kind of Context.

Enrique López Mañas is a Google Developer Expert and

independent IT consultant. He has been working with mobile

technology since 2007. He is an avid contributor to the open-source

community and a FLOSS (Free Libre Open Source Software) kind of guy,

and is one of the top 10 open source Java contributors in Germany. He is a

part of the Google LaunchPad accelerator, where he participates in Google

global initiatives to influence hundreds of the best startups from all around

the globe. He is also a big data and machine learning aficionado.





https://twitter.com/eenriquelopez
https://www.linkedin.com/in/eenriquelopez/?ppe=1

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

3 2

To gather insights on the state of the Java

ecosystem today, we spoke to nine executives who

are familiar with the ecosystem. Here’s who we

spoke to:

Kehinde Ogund
DEVELOPER, ANDELA

Eric Shapiro
CO-FOUNDER AND CHIEF EXPERIENCE OFFICER, ARCTOUCH

Prem Chandrasekaran
V.P. OF SOFTWARE ENGINEERING, BARCLAYCARD

Rajiv Kadayam
SENIOR DIRECTOR OF TECHNOLOGY STRATEGY, EGLOBALTECH

Anders Wallgren
CTO, ELECTRIC CLOUD

Ray Augé
SENIOR SOFTWARE ARCHITECT, LIFERAY

Wayne Citrin
CTO, JNBRIDGE

Kunal Anand
CTO, PREVOTY

Tim Jarrett
DIRECTOR OF PRODUCT MANAGEMENT, VERACODE

KEY FINDINGS
 01 The JVM is considered to be the most important
element of the Java ecosystem. It’s a powerful technology
that will outlive the language. It’s rock solid, proven

stable, and nothing else compares. Massive resources are
available. There is no problem that has not been addressed
by Java. No significant new development is necessary.
There are a tremendous number of solutions available. The
JVM serves as the foundation of a lot of cool things like
scalability, performance, and concurrence. It’s obvious the
developers been thinking about the JVM for a long time.

 02 Out of thirty solutions mentioned, the technical
solution most frequently used in conjunction with Java
is JavaScript. Java tends to be used on the backend for
desktop and for mobile (e.g. Skilltree for Android), while
JavaScript is used for web and UX frontend development.

 03 Oracle is seen as the biggest, but not the only, player
in the Java ecosystem. Several people mentioned that the
Open Source community, Pivotal Labs, Lightbend, Red
Hat, and Apache are key contributors for maintaining and
sponsoring projects like the Spring Framework, Scala,
Akka, JBoss, Spring, Hibernate, Kotlin, and Groovy. All of
these frameworks and languages are invaluable parts of
the ecosystem that help keep Java relevant and innovative
while extending the JVM.

 04 Java 8 is seen as the most significant change to the
Java ecosystem in the past year. Java 8 is getting a lot of
adoption as developers are embracing lambdas as an open
door for functional programming. Respondents are looking
forward to Java 9 as well due to the modularity it provides
without interrupting what has been done in earlier
versions of Java. Both Java 8 and 9 are seen as being more
user friendly, with greater usability and less code than
previous versions.

Executive Insights
on the State of the
Java Ecosystem
BY TOM SMITH
RESEARCH ANALYST, DZONE

The Java ecosystem continues
to be a relevant and dynamic
part of any industry, particularly
financial services, healthcare,
and telecommunications.

Skepticism continues over
whether or not Oracle has Java’s,
and it users’, best interests at
heart, and there are concerns
over their lack of transparency
with regards to releases.

Java 8 and Java 9 seem like
significant improvements
over previous releases, since
they improve usability and
modularity.

01

02

03

Q U I C K V I E W

https://andela.com/
http://www.arctouch.com/
https://home.barclaycardus.com/
http://www.eglobaltech.com/
http://electric-cloud.com/
http://www.liferay.com/
http://jnbridge.com/
https://www.prevoty.com/
http://www.veracode.com/

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

3 3

 05 Java is solving all real-world problems. It’s
used by all industries. Banks run on Java, as do
telecommunications and healthcare companies. Backend
infrastructures for large enterprises are usually all
built with Java. It does all the heavy lifting for business
solutions, big data, and analytics. We’re also seeing
enterprises evolve from monoliths to microservice-
based architectures.

 06 Slow speed to market is the most common problem
today. Java 8 was delayed by two years due in part to
security concerns, and Java 9 has already been delayed
from a 2015 release to a tentative 2017 release. Project
Jigsaw, originally slated to be a part of Java 8, was pushed
to be included in Java 9 instead. These delays make it
seem like Java 9 is being developed in a waterfall model.
The release process is not transparent. It’s still up in the
air whether Oracle is good for Java. Regardless, the Java
community will carry it forward.

Other concerns were with dependencies and verbosity.
For large applications on complex platforms with third
party dependencies, you can still get into “JLL hell.” This
has gotten better over time; however, the intersection
between commerce and community needs to get
better and more transparent. At some point, it may be
necessary to separate the JDK and the JVM.

 07 The future of Java is strong due to its stability.
Software has become a short-term commodity. Java is
a long-term guarantee that will continue to be used by
the enterprise. It’s nice to know something is stable and
will be around for the long-term so developers don’t
become fatigued with all the changes. Java will remain
robust and vital and it will continue to get faster, move
towards microservices, and become extensible with
more languages.

 08 The biggest concern with the state of the Java

ecosystem involves Oracle – their trustworthiness
and their competition with IBM. Oracle owns Java and
there is concern that they will start asking banks to pay
fees. If you’re the CEO of a bank running Java, you’re
not very comfortable. There is fragmentation between
competing JDKs and JVM-based solutions with Oracle
and IBM. There are significant differences that can
prevent something developed for Oracle to run on IBM
software. The underlying implementations are not close
and it makes it difficult to run enterprise software. It’s
impractical to do repetitive work for iOS and Android.

 09 Developers need to know they can make a career
out of Java. It takes minutes to learn and a lifetime
to master. Give yourself time to learn it properly.
For as long as Java has been around, it’s easy to get
complacent with your current skill level. Get out of your
comfort zone and explore. Find interesting open source
projects and deconstruct them to learn how they
were built. This will provide better learning than just
writing a simple script application. Be more active with
open source projects and communities. Be more open,
communicative, and collaborative.

 10 Additional thoughts centered around the size and
the diversity of the ecosystem. What other languages
have robust IDEs and toolsets as Java? What are the
top two or three things a Java developer could not
do without with regards to tools, frameworks, and
IDEs? How has this changed in the last two or three
years? Java can help companies and agencies with
transformation initiatives create more long-lasting
functionality that can scale and meet the long-term
needs of the organization.

Tom Smith is a Research Analyst at DZone who excels at gathering

insights from analytics—both quantitative and qualitative—to drive

business results. His passion is sharing information of value to help

people succeed. In his spare time, you can find him either eating at

Chipotle or working out at the gym.





Respondents are looking forward

to Java 9 as well due to the

modularity it provides without

interrupting what has been done

in earlier versions of Java

The release process is not

transparent. It’s still up in the air

whether Oracle is good for Java.

Regardless, the Java community

will carry it forward

https://twitter.com/ctsmithiii
https://www.linkedin.com/in/ctsmithiii/

SPONSORED OP IN ION

TRY NOW

EASY TO DEPLOY EASY TO SCALE EASY TO MANAGE

No Overpaying for VM Limits! Only Real Usage Charged

Hosted in 54 Data Centres in 28 Countries

Use Jelastic as Your Personal SysAdmin

with automatic vertical scaling

Pay for the UsagePay for VM Limits
Your Server

Limit

Re
so

ur
ce

s

Re
so

ur
ce

s

Limit

Other Cloud Vendors

Elastic Java Multi-Cloud PaaS

https://jelastic.com/cloud-hosting-platform-for-developers/?utm_source=dzone-report&utm_campaign=ads

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

3 5

It‘s expensive to pay for cloud resources you don’t need,

but then it’s also expensive if resource shortages cause

downtime. Choosing the right size of a VM is usually a

challenging task. In a small VM, an application can face

performance issues or even downtime during load spikes, so

many cloud users buy large VMs with reserved resources in

advance. As a result, during normal load or idle periods, all

unused resources are wasted.

Cloud vendors offer vertical scaling for adjusting the amount

of allocated resources according to maximum load spikes,

but how efficient and flexible are VMs for this purpose? If you

need to add just a few more resources, you have to go through

all of the steps of application migration to a VM twice the size,

overpaying for the limits regardless of the real resource usage.

Container technology unlocks a new level of flexibility due to

its out-of-the-box automatic resource sharing on the same

host. Vertical scaling with containers optimizes memory and

CPU usage according to the current load in each instance, and

it works perfectly for both kinds of applications — monoliths

and microservices.

At the same time, everything is not that easy when it comes

to scaling Java vertically, even inside a container. The extra

complexity is related to the JVM’s memory management

design. To scale a Java application vertically, the used garbage

collector should provide memory compaction in runtime.

The good news is that Garbage-First (G1) has been the

default garbage collector since JDK 9. One of its advantages

is its ability to compact free memory space without lengthy

GC pause times. A combination of container technology

and G1 provides the highest efficiency in terms of resource

usage for Java applications in the cloud.

WRITTEN BY RUSLAN SYNYTSKY
CEO AND CO-FOUNDER, JELASTIC

Scaling Java
Vertically: VMs
vs. Containers

Elastic PaaS with a rich web UI for easy creation, scaling, clustering, and smooth updates of
Java monolithic applications and microservices

Jelastic Multi-Cloud PaaS By Jelastic

CASE STUDY
Miele USA develops a wide range of e-commerce services, and

originally used GlassFish application server for Java EE projects.

With Jelastic, Miele easily migrated from VMs to containers,

and deployed a highly available environment, composed of

multiple GlassFish nodes and a sticky load balancer based on

NGINX. Initially, the workloads were running in Jelastic Public

Cloud, and after the project grew, Miele moved to Jelastic Virtual

Private Cloud.

Later, Jelastic helped Miele to migrate their staging and

production environments from GlassFish to WildFly, as well

as solve performance issues and enforce high availability of

the entire environment by replacing a single instance of load

balancer with multiple HAProxy nodes, distributed across

different physical hosts.

STRENGTHS

• 	 Superb developer web portal for easy provisioning, scaling,

and updating environments

• 	 Wide range of built-in stacks: Tomcat, GlassFish, WildFly,

TomEE, Spring Boot, Payara, Jetty, and SQL/NoSQL DBs

• 	 Automatic vertical and horizontal scaling with high

availability and load balancing

• 	 Managed multi-tenant Docker containers with full

compatibility for the native ecosystem

• 	 Admin tasks automation: CI/CD processes, container

management, complex clustering

• 	 Multi-cloud and multi-data center distribution of workloads

with live migration

CATEGORY
PaaS, CaaS, DevOps,

Cloud

NEW RELEASES
Quarterly

OPEN SOURCE
No

WEBSITE www.jelastic.com BLOG blog.jelastic.comTWITTER @Jelastic

SPONSORED OP IN ION

NOTABLE CUSTOMERS
• 	 Telecom Italia

• 	 Miele

• 	 FA Solutions

• 	 GMV

• 	 Locaweb

• 	 DataCenter Finland

https://docs.jelastic.com/automatic-vertical-scaling?utm_source=dzone-report&utm_campaign=article
http://snip.ly/fc6u0?utm_source=dzone-report&utm_campaign=article#https://docs.oracle.com/javase/9/gctuning/garbage-first-garbage-collector.htm
http://www.jelastic.com
http://www.jelastic.com
http://blog.jelastic.com/
http://blog.jelastic.com/
https://twitter.com/Jelastic

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

3 6

Java gets even greater when you have the right tools to back you up. This directory contains libraries,

frameworks, IDEs, and more to help you with everything from database connection to release

automation, from code review to application monitoring, from microservice architectures to memory

management. Amp up your Java development with these solutions to make your life easier and your

application more powerful.

Solutions Directory

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Adzerk Hoplon ClojureScript web framework Open Source hoplon.io

Alachisoft TayzGrid In-memory data grid (JCache compliant) Open Source alachisoft.com/tayzgrid

Amazon Web Services AWS ECS Elastic container service (with Docker support) Free Tier Available aws.amazon.com/ecs

AngularFaces AngularFaces AngularJS and JSF Open Source angularfaces.com

ANTLR ANTLR
Parser generator (for creating compilers and
related tools)

Open Source antlr3.org

Apache Software Foundation Apache Ant
Build automation (process-agnostic: specify
targets and tasks)

Open Source ant.apache.org

Apache Software Foundation Apache Camel
Java implementation of enteprrise integration
patterns

Open Source camel.apache.org

Apache Software Foundation Apache Commons Massive Java package collection Open Source
commons.apache.org/components.
html

Apache Software Foundation
Apache Commons

DBCP
Database connection pooling Open Source

commons.apache.org/proper/
commons-dbcp

Apache Software Foundation Apache Commons IO Utilities for Java I/O (part of Apache Commons) Open Source
commons.apache.org/proper/
commons-io

Apache Software Foundation Apache CXF
Java services framework with JAX-WS and JAX-RS
support

Open Source cxf.apache.org

Apache Software Foundation Apache DeltaSpike
Portable CDI extensions (bean validation, JSF
enhancements, invocation controls, transactions
contexts, more)

Open Source deltaspike.apache.org

Apache Software Foundation Apache Ignite In-memory Data Grid Open Source ignite.apache.org

Apache Software Foundation Apache Ivy
Dependency management with strong Ant
integration)

Open Source ant.apache.org/ivy

Apache Software Foundation Apache Kafka Distributed pub-sub message broker Open Source kafka.apache.org

Apache Software Foundation Apache Log4j Logging for Java Open Source logging.apache.org/log4j/2.x

Apache Software Foundation Apache Lucene Search engine in Java Open Source lucene.apache.org/core

http://hoplon.io
http://alachisoft.com/tayzgrid
http://aws.amazon.com/ecs
http://angularfaces.com
http://antlr3.org
http://ant.apache.org
http://camel.apache.org
http://commons.apache.org/components.html
http://commons.apache.org/components.html
http://commons.apache.org/proper/commons-dbcp
http://commons.apache.org/proper/commons-dbcp
http://commons.apache.org/proper/commons-io
http://commons.apache.org/proper/commons-io
http://cxf.apache.org
http://deltaspike.apache.org
http://ignite.apache.org
http://ant.apache.org/ivy
http://kafka.apache.org
http://logging.apache.org/log4j/2.x
http://lucene.apache.org/core

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

3 7

Solutions Directory
COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Apache Software Foundation Apache Maven
Build automation (opinionated, plugin-happy,
higher-level build phases, dependency
management/resolution)

Open Source maven.apache.org

Apache Software Foundation Apache Mesos Distributed systems kernel Open Source mesos.apache.org

Apache Software Foundation Apache MyFaces
JSF and additional UI widgets, extensions,
integrations

Open Source myfaces.apache.org

Apache Software Foundation Apache OpenNLP
Natural language processing machine learning
toolkit

Open Source opennlp.apache.org

Apache Software Foundation Apache POI Microsoft document processing for Java Open Source poi.apache.org

Apache Software Foundation Apache Shiro
Java security framework (authen/author, crypto,
session management)

Open Source shiro.apache.org

Apache Software Foundation Apache Struts Web framework (Servlet and MVC) Open Source struts.apache.org

Apache Software Foundation Apache Tapestry
Web framework (pages&components=POJOs, live
class reloading, opinionated, light HttpSessions)

Open Source tapestry.apache.org

Apache Software Foundation Apache Tomcat
Servlet container and web server (JSP, EL,
Websocket)

Open Source tomcat.apache.org

Apache Software Foundation Apache Wicket
Simple web app framework (pure Java and HTML
with Ajax output)

Open Source wicket.apache.org

Apache Software Foundation Apache Xerces2 XML parser for Java Open Source xerces.apache.org/xerces2-j

Apache Software Foundation Derby Java SQL database engine Open Source db.apache.org/derby

Apache Software Foundation FreeMarker
Server-side Java web templating (static and
dynamic)

Open Source freemarker.org

Apache Software Foundation
(esp. Tomitribe) Apache TomEE

Apache Tomcat and Java EE features (CDI, EJB,
JPA, JSF, JSP, more)

Open Source tomee.apache.org

AppDynamics AppDynamics APM with Java agent Free Tier Available appdynamics.com

AssertJ AssertJ
Java assertion framework (for verification and
debugging)

Open Source joel-costigliola.github.io/assertj

Atlassian Clover Code coverage analysis tool 30 days atlassian.com/software/clover/pricing

Azul Systems jHiccup
Show performance issues caused by JVM (as
opposed to app code)

Open Source azul.com/jhiccup

Azul Systems Zing JVM with unique pauseless GC Free Tier Available azul.com/products/zing

Azul Systems Zulu Enterprise-grade OpenJDK build Open Source azul.com/products/zulu

Black Duck Software Black Duck Platform
Security and open-source scanning and
management (with container support)

Free Security Scan blackducksoftware.com

BMC TrueSight Pulse Infrastructure monitoring 14 Days bmc.com/truesightpulse

BouncyCastle BouncyCastle Java and C# cryptography libraries Open Source bouncycastle.org

http://maven.apache.org
http://mesos.apache.org
http://myfaces.apache.org
http://opennlp.apache.org
http://poi.apache.org
http://shiro.apache.org
http://struts.apache.org
http://tapestry.apache.org
http://tomcat.apache.org
http://wicket.apache.org
http://xerces.apache.org/xerces-j
http://db.apache.org/derby
http://freemarker.org
http://tomee.apache.org
http://appdynamics.com
http://joel-costigliola.github.io/assertj
http://atlassian.com/software/clover/pricing
http://azul.com/jhiccup
http://azul.com/products/zing
http://azul.com/products/zulu
http://blackducksoftware.com
http://bmc.com/truesightpulse
http://bouncycastle.org

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

3 8

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

CA Technologies
CA Application

Monitoring
APM with Java agent 30 Days ca.com

Canoo Dolphin Platform
Presentation model framework (multiple views for
same MVC group)

Open Source dolphin-platform.io

Cask Cask Data and application integration platform Open Source cask.co

Catchpoint Catchpoint APM with Java agent Free Trial catchpoint.com

Charlie Hubbard FlexJSON JSON serialization Open Source flexjson.sourceforge.net

CheckStyle CheckStyle Automated check against Java coding standards Open Source checkstyle.sourceforge.net

Chef Software Chef
Infrastructure automation / configuration
management

Open Source chef.io/chef

Chronon Systems DripStat
Java and Scala APM with many framework
integrations

Free Tier Available dripstat.com

Cloudbees
Cloudbees Jenkins

Platform
CI server and verified plugins, build server
provisioning, pipeline monitoring, build analytics

2 Weeks cloudbees.com

Cloudbees Jenkins CI server Open Source jenkins.io

Codeborne Selenide UI tests in Java (Selenium WebDriver) Open Source selenide.org

Codenvy Codenvy IDE SaaS IDE with dev workspace isolation Free Tier Available codenvy.com

Couchbase Couchbase Document-oriented DBMS Open Source couchbase.com

Cucumber Cucumber BDD framework with Java version Open Source cucumber.io

Data Geekery jOOQ Non-ORM SQL in Java Open Source jooq.org

Data Geekery jOO_
Extension of Java 8 lambda support (tuples, more
parameters, sequential and ordered streams)

Open Source github.com/jOOQ/jOOL

Docker Docker Containerization platform Open Source docker.com

Draios Sysdig Container monitoring Open Source sysdig.com

Dynatrace
Dynatrace Application

Monitoring
APM 30 Days dynatrace.com

Dynatrace (formerly Ruxit)
Dynatrace SaaS and

Managed
APM 30 Days

dynatrace.com/platform/offerings/
ruxit

EasyMock EasyMock Unit testing framework (mocks Java objects) Open Source easymock.org

Eclipse Foundation Eclipse IDE (plugin-happy) Open Source eclipse.org

Eclipse Foundation Eclipse Che IDE (workspace isolation, cloud hosting) Open Source eclipse.org/che

Eclipse Foundation Eclipse Collections Java Collections framework Open Source eclipse.org/collections

Eclipse Foundation EclipseLink JPA and MOXx(JAXB) implementation Open Source eclipse.org/eclipselink

Eclipse Foundation Jetty
Servlet engine and http server (with non-http
protocols)

Open Source eclipse.org/jetty

http://ca.com
http://dolphin-platform.io
http://cask.co
http://catchpoint.com
http://flexjson.sourceforge.net
http://checkstyle.sourceforge.net
http://chef.io/chef
http://dripstat.com
http://cloudbees.com
http://jenkins.io
http://selenide.org
http://codenvy.com
http://couchbase.com
http://cucumber.io
http://jooq.org
http://github.com/jOOQ/jOOL
http://docker.com
http://sysdig.com
http://dynatrace.com
http://dynatrace.com/platform/offerings/ruxit
http://dynatrace.com/platform/offerings/ruxit
http://easymock.org
http://eclipse.org
http://eclipse.org/che
http://eclipse.org/collections
http://eclipse.org/eclipselink
http://eclipse.org/jetty

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

3 9

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Eclipse Foundation SWT Java UI widget toolkit Open Source eclipse.org/swt

EJ Technologies JProfiler Java profiling
Free for Open

Source and
Nonprofits

ej-technologies.com/products/
jprofiler/overview.html

Elastic ElasticSearch Distributed search and analytics engine Open Source elastic.co

Electric Cloud ElectricFlow Release automation
Free Version

Available
electric-cloud.com

Elide Elide JSON<-JPA web service library Open Source elide.io

GE Software Predix
Industrial IoT platform with Java SDK (on Cloud
Foundry)

N/A ge.com/digital/predix

Genuitec MyEclipse IDE (Java EE and web) 30 Days genuitec.com/products/myeclipse

Google
Google Web Toolkit

(GWT)
Java->Ajax Open Source gwtproject.org

Google GSON JSON serialization Open Source github.com/google/gson

Google Guava
Java libraries from Google (collections, caching,
concurrency, annotations, I/O, more)

Open Source github.com/google/guava

Google Guice Dependency injection framework Open Source github.com/google/guice

Gradle Gradle
Build automation (Groovy-based scripting of task
DAGs)

Open Source gradle.org

GridGain Systems GridGain
In-memory data grid (Apache Ignite and
enterprise management, security, monitoring)

Free Tier Available gridgain.com

H2 H2 Java SQL database engine Open Source h2database.com

Haulmont CUBA Platform
Java rapid enterprise app development
framework

Free Tier Available cuba-platform.com

Hazelcast
Hazelcast Enterprise

Platform
Distibuted in-memory data grid (with JCache
implementation)

30 Days hazelcast.com

HyperGrid HyperForm Container composition platform Free Tier Available hypergrid.com

IBM BlueMix PaaS with extensive Java support Free Tier Available ibm.com/bluemix

IBM
WebSphere

Application Server
Java application server

Available By
Request

ibm.com/software/products/en/
appserv-was

IBM
WebSphere eXtreme

Scale
In-memory data grid

Available By
Request

ibm.com/support/knowledgecenter/
en/SSTVLU_8.5.0/com.ibm.
websphere.extremescale.doc/
cxsoverview.html

IceSoft IceFaces JSF framework Open Source icesoft.org

Immunio Immunio
Runtime application self-protection with Java
support

30 days immun.io

Informatica Informatica Data integration and management 30 Days
informatica.com/products/data-
integration.html

Integral FusionReactor
JVM APM with production debugging and crash
protection

14 Days fusion-reactor.com

http://eclipse.org/swt
http://ej-technologies.com/products/jprofiler/overview.html
http://ej-technologies.com/products/jprofiler/overview.html
http://elastic.co
http://electric-cloud.com
http://elide.io
http://ge.com/digital/predix
http://genuitec.com/products/myeclipse
http://gwtproject.org
http://github.com/google/gson
http://github.com/google/guava
http://github.com/google/guice
http://gradle.org
http://gridgain.com
http://h2database.com
http://cuba-platform.com
http://hazelcast.com
http://hypergrid.com
http://ibm.com/bluemix
http://ibm.com/software/products/en/appserv-was
http://ibm.com/software/products/en/appserv-was
http://ibm.com/support/knowledgecenter/en/SSTVLU_8.5.0/com.ibm.websphere.extremescale.doc/cxsoverview.html
http://ibm.com/support/knowledgecenter/en/SSTVLU_8.5.0/com.ibm.websphere.extremescale.doc/cxsoverview.html
http://ibm.com/support/knowledgecenter/en/SSTVLU_8.5.0/com.ibm.websphere.extremescale.doc/cxsoverview.html
http://ibm.com/support/knowledgecenter/en/SSTVLU_8.5.0/com.ibm.websphere.extremescale.doc/cxsoverview.html
http://icesoft.org
http://immun.io
https://www.informatica.com/products/data-integration.html
https://www.informatica.com/products/data-integration.html
http://fusion-reactor.com

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

4 0

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Isomorphic Software SmartGWT
Java->Ajax with rapid dev tools, UI components,
multi-device

60 Days smartclient.com

iText Group iText PDF manipulation from Java Open Source itextpdf.com

Jackson Jackson JSON processing Open Source github.com/FasterXML/jackson

Jahia Solutions Group Jahia Platform Enterprise CMS/portal (Jackrabbit compliant)
Open Source

Version Available
jahia.com

Janino Compiler Janino Lightweight Java compiler Open Source janino-compiler.github.io/janino

jClarity Censum GC log analysis 7 Days jclarity.com

jClarity Illuminate
Java-focused APM with machine learning &
autosummarization

14 Days jclarity.com

JD JD Java decompiler Open Source jd.benow.ca

jDBI jDBI SQL library for Java Open Source jdbi.org

JDOM JDOM XML in Java (with DOM and SAX integration) Open Source jdom.org

Jelastic Jelastic Multi-cloud PaaS (with Java support) Free Tier Available jelastic.com

JetBrains Upsource Code review Free 10-User Plan jetbrains.com/upsource

JetBrains IntelliJ IDEA IDE Free Tier Available jetbrains.com/idea

JFrog Artifactory Binary/artifact repository manager Open Source jfrog.com/artifactory

JFrog Bintray Package hosting and distribution infrastructure Open Source bintray.com

Jinfonet JReport Reporting, dashboard, analytics, BI for Java Free Trial jinfonet.com

JNBridge
JMS Adapters for .NET
or BizTalk by JNBridge

JMS Integration with .NET or BizTalk 30 Days
jnbridge.com/software/jms-adapter-
for-biztalk/overview

JNBridge JNBridgePro Java and .NET interoperability 30 Days
jnbridge.com/software/jnbridgepro/
overview

Joda Joda Platform Low-level Java libraries Open Source joda.org/joda-time

ItsNat ItsNat
Web framework (Swing-inspired, Single Page
Interface (multiple states=appPages) concept)

Open Source itsnat.org/home

Joyent Triton Container-native infrastructure with Java images $250 credit joyent.com/triton/compute

JUnit JUnit Unit testing framework (mocks Java objects) Open Source junit.org

Liferay
Liferay Digital

Experience Platform
Enterprise CMS/portal

Open Source
Version Available

liferay.com

Lightbend Akka Java implementation of Actor Model Open Source akka.io

Lightbend Lagom Reactive microservices framework (Java, Scala) Open Source lightbend.com/lagom

http://smartclient.com
http://itextpdf.com
http://github.com/FasterXML/jackson
http://jahia.com
http://janino-compiler.github.io/janino
http://jclarity.com
http://jclarity.com
http://jd.benow.ca
http://jdbi.org
http://jdom.org
http://jelastic.com
http://jetbrains.com/upsource
http://jetbrains.com/idea
http://jfrog.com/artifactory
http://bintray.com
http://jinfonet.com
http://jnbridge.com/software/jms-adapter-for-biztalk/overview
http://jnbridge.com/software/jms-adapter-for-biztalk/overview
http://jnbridge.com/software/jnbridgepro/overview
http://jnbridge.com/software/jnbridgepro/overview
http://joda.org/joda-time
http://itsnat.org/home
http://joyent.com/triton/compute
http://junit.org
http://liferay.com
http://akka.io
http://lightbend.com/lagom

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

4 1

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Lightbend
Lightbend Reactive

Platform
Dev and prod suite for reactive JVM applications
(Akka and Play and Lagom and Spark)

Open Source lightbend.com/platform

Lightbend Play
Java and Scala web framework (stateless, async,
built on Akka)

Open Source playframework.com

Lightbend Spray REST for Scala/Akka Open Source spray.io

Machinery for Change CP3O JDBC connection and statement pooling Open Source mchange.com/projects/c3p0

MarkLogic MarkLogic 8 Multi-model enterprise NoSQLÊdatabase
Free Developer

Version
marklogic.com

Mendix Mendix Platform Enterprise aPaaS Free Trial
mendix.com/application-platform-as-
a-service

Microfocus Visual COBOL
COBOL accessibility from Java (with COBOL->Java
bytecode compilation)

30 Days
microfocus.com/products/visual-
cobol

Mockito Mockito Unit testing framework (mocks Java objects) Open Source mockito.org

MongoDB MongoDB Document-oriented DBMS Open Source mongodb.com

Mozilla Rhino JavaScript implemention in Java (for embedded JS) Open Source
developer.mozilla.org/en-US/docs/
Mozilla/Projects/Rhino

MuleSoft AnyPoint Platform Hybrid integration platform Free Trial
mulesoft.com/platform/enterprise-
integration

MyBatis MyBatis JDBC persistence framework Open Source mybatis.org/mybatis-3

Mysema QueryDSL
DSL for multiple query targets (JPA, JDO, SQL,
Lucene, MongoDB, Java Collections)

Open Source querydsl.com

Nastel AutoPilot APM Freemium nastel.com

Netflix Hystrix Latency and fault tolerance library Open Source github.com/Netflix/Hystrix

Netflix Ribbon RPC library with load balancing Open Source github.com/Netflix/ribbon

Netflix RxJava
Reactive extension for JVM (extends observer
pattern)

Open Source github.com/ReactiveX/RxJava

New Relic New Relic APM with Java agent 14 Days newrelic.com

NGINX NGINX Web server, load balancer, reverse proxy Open Source nginx.com

Ninja Framework Ninja Framework Full-stack web framework for Java Open Source ninjaframework.org/

Nuxeo Nuxeo Platform
Structured and richcContent management
platform

30 days nuxeo.com

Object Refinery Limited JFreeChart Java charting library Open Source jfree.org/jfreechart

OmniFaces OmniFaces JSF utility library Open Source omnifaces.org

OpenCV Team OpenCV Computer vision libraries (with Java interfaces) Open Source opencv.org/

Oracle GlassFish Java application server Open Source javaee.github.io/glassfish/download

http://lightbend.com/platform
http://playframework.com
http://spray.io
http://mchange.com/projects/c3p0
http://marklogic.com
http://mendix.com/application-platform-as-a-service
http://microfocus.com/products/visual-cobol
http://mockito.org
http://mongodb.com
http://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
http://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
http://mulesoft.com/platform/enterprise-integration
http://mybatis.org/mybatis-3
http://querydsl.com
http://nastel.com
http://github.com/Netflix/Hystrix
http://github.com/Netflix/ribbon
http://github.com/ReactiveX/RxJava
http://newrelic.com
http://nginx.com
http://ninjaframework.org
http://nuxeo.com
http://jfree.org/jfreechart
http://omnifaces.org
http://opencv.org
http://javaee.github.io/glassfish/download

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

4 2

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Oracle JavaFX Java GUI library Open Source
docs.oracle.com/javase/8/javase-
clienttechnologies.htm

Oracle JAX-RS REST spec for Java Open Source
download.oracle.com/otndocs/jcp/
jaxrs-2_0-fr-eval-spec

Oracle JDeveloper IDE Freeware
oracle.com/technetwork/developer-
tools/jdev/overview

Oracle Jersey
RESTful web services in Java (JAX-RS with
enhancements)

Open Source github.com/jersey/jersey

Oracle Java Server Faces Java spec for server-side component-based UI Open Source
oracle.com/technetwork/java/javaee/
javaserverfaces-139869.html

Oracle JSP
Server-side Java web templating (static and
dynamic)

Open Source oracle.com/technetwork/java/javaee/jsp

Oracle NetBeans IDE Open Source netbeans.org

Oracle Oracle Coherence In-memory ditributed data grid Open Source
oracle.com/technetwork/middleware/
coherence/overview

Oracle Oracle Database 12c Relational DBMS N/A oracle.com/technetwork/database

Oracle VisualVM JVM Monitoring Open Source visualvm.github.io

Oracle WebLogic Java application server N/A oracle.com/middleware/weblogic

OSGi Alliance OSGi Dynamic component system spec for Java Open Source osgi.org

OutSystems OutSystems Rapid application development platform Free Tier Available outsystems.com

OverOps OverOps JVM agent for production debugging Free Tier Available overops.co

OW2 Consortium ASM
Java bytecode manipulation and analysis
framework

Open Source asm.ow2.org

Palamida Palamida
Security and open-source scanning and
management

Available By
Request

palamida.com

Payara Payara Server Java EE application server (enchanced GlassFish) Open Source payara.fish/home

Pedestal Pedestal Clojure Web Framework Open Source github.com/pedestal/pedestal

Percona Percona Server
High-performance drop-in MySQL or MongoDB
replacement

Open Source percona.com

Pivotal GemFire
Distributed in-memory data grid (using Apache
Geode)

Open Source pivotal.io/big-data/pivotal-gemfire

Pivotal Project Reactor
Non-blocking, async JVM library (based on
Reactive Streams spec)

Open Source projectreactor.io

Pivotal Spring Boot
REST web services framework (opinionated, rapid
spinup)

Open Source projects.spring.io/spring-boot

Pivotal Spring Cloud
Distributed systems framework (declarative,
opinionated)

Open Source cloud.spring.io

Pivotal Spring Framework

Enterpise Java platform (large family of
(convention-over-configuration) services,
including dependency injection, MVC, messaging,
testing, AOP, data access, distributed computing
services, etc.)

projects.spring.io/spring-framework

http://docs.oracle.com/javase/8/javase-clienttechnologies.htm
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm
http://download.oracle.com/otndocs/jcp/jaxrs-2_0-fr-eval-spec
http://download.oracle.com/otndocs/jcp/jaxrs-2_0-fr-eval-spec
http://oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://github.com/jersey/jersey
http://oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://oracle.com/technetwork/java/javaee/jsp/index.html
http://netbeans.org
http://www.oracle.com/technetwork/middleware/coherence/overview/index.html
http://www.oracle.com/technetwork/middleware/coherence/overview/index.html
http://oracle.com/technetwork/database/index.html
http://visualvm.github.io
http://oracle.com/middleware/weblogic/index.html
http://osgi.org
http://outsystems.com
http://overops.com
http://asm.ow2.org
http://palamida.com
http://payara.fish/home
http://github.com/pedestal/pedestal
http://percona.com
http://pivotal.io/big-data/pivotal-gemfire
http://projectreactor.io
http://projects.spring.io/spring-boot
http://cloud.spring.io
http://projects.spring.io/spring-framework

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

4 3

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Pivotal Spring MVC Server-side web framework Open Source
docs.spring.io/spring/docs/current/
spring-framework-reference/html/
mvc.html

Plumbr Plumbr
Memory Leak Detection, GC Analysis, Thread &
Query Monitoring

14 days plumbr.eu

PrimeTek PrimeFaces UI components for JSF Open Source primefaces.org

Progress Software DataDirect JDBC connectors (many data sources) Free Tier Available progress.com/jdbc

PTC ThingWorx IoT platform with Java SDK Free Trial developer.thingworx.com

PubNub PubNub Real-timeÊmobile, web, and IoT APIs Free Tier Available pubnub.com

Puppet Labs Puppet
Infrastructure automation / configuration
management

Open Source puppet.com

Push Technology Push Technology Real-time messaging (web, mobile, IoT)
Available By

Request
pushtechnology.com

Qoppa Qoppa PDF Studio PDF manipulation from Java
Available By

Request
qoppa.com

QOS.ch Logback Java logging framework (Log4j take two) Open Source logback.qos.ch

QOS.ch Sl4j Logging for Java Open Source slf4j.org

Raphael Winterhalter CGLIB Byte code generation library Open Source github.com/cglib/cglib

Red Hat Ansible
Deployment automation and configuration
management

Open Source ansible.com

Red Hat Drools Business rules management system Open Source drools.org

Red Hat Hibernate ORM Java ORM with JPA and native APIs Open Source hibernate.org/orm

Red Hat Hibernate Search
Full-text search for objects (indexes domain model
with annotations, returns objects from free text
queries)

Open Source hibernate.org/search

Red Hat Infinispan
Distributed in-memory key/value store (Java
embeddable)

Open Source infinispan.org

Red Hat JBoss Data Grid In-memory distributed NoSQL data store Free Tier Available
redhat.com/en/technologies/jboss-
middleware/data-grid

Red Hat JBoss EAP Java EE 7 platform Open Source
developers.redhat.com/products/eap/
overview

Red Hat JGroups Java multicast messaging library Open Source jgroups.org

Red Hat RichFaces UI components for JSF Open Source richfaces.jboss.org

Red Hat WildFly Java application server Open Source wildfly.org

Red Hat WildFly Swarm
Uber JAR builder (with trimmed WildFly app
server)

Open Source wildfly.org/swarm

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
http://plumbr.eu
http://primefaces.org
http://progress.com/jdbc
http://developer.thingworx.com
http://pubnub.com
http://puppet.com
http://pushtechnology.com
http://qoppa.com
http://QOS.ch
http://logback.qos.ch
http://QOS.ch
http://slf4j.org
http://github.com/cglib/cglib
http://ansible.com
http://drools.org
http://hibernate.org/orm
http://hibernate.org/search
http://infinispan.org
http://redhat.com/en/technologies/jboss-middleware/data-grid
http://redhat.com/en/technologies/jboss-middleware/data-grid
https://developers.redhat.com/products/eap/overview/
https://developers.redhat.com/products/eap/overview/
http://jgroups.org
http://richfaces.jboss.org
http://wildfly.org
http://wildfly.org/swarm

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

4 4

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

Redis Labs Redis
In-memory key-value data structure store (use as
database, cache, message broker)

Open Source redis.io

Ring Ring Clojure Web Framework Open Source github.com/ring-clojure/ring

Riverbed SteelCentral APM 30-90 days riverbed.com

Salesforce Heroku Platform PaaS Free Tier Available heroku.com

Salesforce Salesforce App Cloud PaaS with app marketplace
Free Developer

Version
developer.salesforce.com

Sauce Labs
Sauce Labs

Automated Testing
Platform

Browser and mobile test automation (Selenium,
Appium) with Java interface

Open Source saucelabs.com/open-source

Scalatra Team Scalatra Scala web microframework Open Source scalatra.org

Slenium Selenium
Browser automation with Junit and TestNG
integration

Open Source seleniumhq.org

SonarSource SonarQube
Software quality platform (unit testing, code
metrics, architecture and complexity analysis,
coding rule checks, more)

Open Source sonarqube.org

Sonatype Nexus Repository Binary/artifact Repository Open Source sonatype.org/nexus

Spark Spark Framework Lightweight Java 8 web app framework Open Source sparkjava.com

Spock Spock
Test and specification framework for Java and
Groovy

Open Source spockframework.org

Square Dagger Dependency injector for Android and Java Open Source square.github.io/dagger

Stormpath Stormpath Identity and user management
Free Version

Available
stormpath.com

Tasktop Tasktop Dev
In-IDE ALM tool (commercial version of Eclipse
Mylyn)

30 Days tasktop.com/tasktop-dev

Teradata Teradata
Data warehousing, analytics, lake, SQL on
Hadoop and Cassandra, Big Data appliances, R
integration, workload management

free developer
version

teradata.com

Terracotta BigMemory Max
In-memory data grid with Ehcache (JCache
implementation)

90 Days terracotta.org/products/bigmemory

Terracotta EHCache JCache implementation Open Source ehcache.org

TestNG TestNG Java unit testing framework (JUnit-inspired) Open Source testng.org

The Grails Project Grails Groovy web framework (like Ruby on Rails) Open Source grails.org

The Linux Foundation Kubernetes Container orchestration Open Source kubernetes.io

http://redis.io
http://github.com/ring-clojure/ring
http://riverbed.com
http://heroku.com
http://developer.salesforce.com
http://saucelabs.com/open-source
http://scalatra.org
http://seleniumhq.org
http://sonarqube.org
http://sonatype.org/nexus
http://sparkjava.com
http://spockframework.org
http://square.github.io/dagger
http://stormpath.com
http://tasktop.com/tasktop-dev
http://teradata.com
http://terracotta.org/products/bigmemory
http://ehcache.org
http://testng.org
http://grails.org
http://kubernetes.io

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

4 5

COMPANY PRODUCT PRODUCT TYPE FREE TRIAL WEBSITE

The Netty Project Netty
Event-driven, non-blocking JVM framework for
protocol clients & servers

Open Source netty.io

Thinking Software Race Catcher Dynamic race detection 7 Days thinkingsoftware.com

ThoughtWorks Go Continuous delivery server Open Source go.cd

Thymeleaf Thymeleaf Server-side Java web template engine Open Source thymeleaf.org

Twilio Twilio Messaging APIs (text, voice, VoIP) free key available twilio.com

Twitter Finagle
RPC for high-concurrency JVM servers (Java and
Scala APIs, uses Futures)

Open Source twitter.github.io/finagle

Twitter Finatra
Scala HTTP services built on TwitterServer and
Finagle

Open Source twitter.github.io/finatra

Vaadin Vaadin Server-side Java->HTML5 Open Source vaadin.com

Vert.x Vert.x Event-driven, non-blocking JVM framework Open Source vertx.io

vmlens vmlens Java race condition catcher Free Trial vmlens.com

Waratek Waratek
Java security (runtime application self-protection
(RASP))

30 days waratek.com

Wiremock Wiremock HTTP mocking Open Source wiremock.org

WorldWide Conferencing Lift
Scala web framework with ORM, strong view
isolation, emphasis on security

Open Source liftweb.net

WSO2
WSO2 Application

Server
Web application server Open Source

wso2.com/products/application-
server

WSO2
WSO2 Microservices
Framework for Java

Microservices framework for Java Open Source
wso2.com/products/microservices-
framework-for-java

XebiaLabs XebiaLabs XL Deployment automation and release management
Available By

Request
xebialabs.com

Xstream Xstream XML serialization Open Source x-stream.github.io

Yammer Dropwizard
REST web services framework (opinionated, rapid
spinup)

Open Source dropwizard.io

YourKit YourKit Java Profiler Java CPU & memory profiler 15 Days yourkit.com

ZeroTurnaround JRebel Class hot-loading (in running JVM) Free Trial zeroturnaround.com/software/jrebel

ZeroTurnaround XRebel Java web app profiler 14 Days zeroturnaround.com

Zkoss ZK Framework Enterprise Java web framework Open Source zkoss.org

Zoho Site24x7
Website, server, application performance
monitoring

30 Days site24x7.com

http://netty.io
http://thinkingsoftware.com
http://go.cd
http://thymeleaf.org
http://twilio.com
http://twitter.github.io/finagle
http://twitter.github.io/finatra
http://vaadin.com
http://vertx.io
http://vmlens.com
http://waratek.com
http://wiremock.org
http://liftweb.net
http://wso2.com/products/application-server/
http://wso2.com/products/microservices-framework-for-java/
http://xebialabs.com
http://x-stream.github.io
http://dropwizard.io
http://yourkit.com
http://zeroturnaround.com/software/jrebel
http://zeroturnaround.com
http://zkoss.org
http://site24x7.com

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

DZONE.COM/GUIDES DZONE’S GUIDE TO THE DZONE GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

4 6

APPLICATION PROGRAM
INTERFACE (API)
A set of tools for determining how
software components should act
within an application.

ANDROID ACTIVITY
A single, focused action that the user
can perform on an Android device,
which creates a window to place a UI
for the user to interact with.

CONCURRENCY
The ability to run several
applications, or several parts of an
application, at the same time.

COROUTINE
Coroutines simplify asynchronous
programming by putting the
complications into libraries.
The logic of the program can
be expressed sequentially in a
coroutine, and the underlying library
will figure out the asynchrony.

DESIGN PATTERN
A reusable, high-level solution to a
common problem in an application
or architecture.

DOMAIN-DRIVEN DESIGN (DDD)
A software development practice
in which an application’s main
focus is on the domain, or set of
requirements or functionalities, and
developers work with the business
to ensure the application meets
these requirements.

ENTERPRISE ARCHITECTURE
The fundamental decisions about
the way an enterprise application
will be built that will be difficult to
change afterward.

FUTURE
Futures represent the result of an
asynchronous computation.

INSTRUMENTATION
Hooks inside the JVM and/or your

code to allow visibility into the inner
workings.

JAVA DEVELOPMENT KIT (JDK)
A free set of tools, including a
compiler, provided by Oracle, the
owners of Java.

JAVA ENTERPRISE EDITION
(JAVA EE)
A platform that provides an API
for object-relational mapping,
web services, and distributed
architectures to develop and deploy
Java apps.

JAVA VIRTUAL MACHINE (JVM)
Abstracted software that allows a
computer to run a Java program.

JAVA MANAGEMENT EXTENSIONS
(JMX)
Tools for monitoring and managing
Java applications, networks, and
devices.

KOTLIN
A language that runs on the JVM,
developed by JetBrains, provided
under the Apache 2.0 License,
offering both object-oriented and
functional features.

LAMBDA EXPRESSIONS
An expression in Java 8 that allows
base classes to be implemented
without being named.

MEMORY LEAK
A resource leak that occurs when
a computer program incorrectly
manages memory allocations.

MICROSERVICES ARCHITECTURE
An architecture for an application
that is built with several modular
pieces, which are deployed
separately and communicate with
each other, rather than deploying
one single piece of software.

MODULE
A self-contained programming unit
that exposes a specific set of APIs
to the outside world and hides the
rest. A module can also specify
which other modules it requires, and
which other modules can use it.

MULTI-RELEASE JAR FILE
A Jar (Java ARchive) file that
exposes different classes or versions
of classes depending on which
version of Java it’s running on. This
allows developers to write code that
will run on older versions of Java,
but when run on newer versions
of Java will be able to use features
offered in the newer versions of Java
and missing from the older versions.

PRIVATE JRE
A Java Runtime Environment
that ships with a Java application
that contains only those libraries
needed by an application. Private
JREs are generally smaller than the
standard JREs installed by the Java
installer. Enclosing a private JRE with
a Java application guarantees that
the application can run, even if Java
was not yet previously installed on
the machine.

SCALA
An object-oriented programming
language that runs on the JVM
and is interoperable with Java, and
has many features of functional
programming languages.

SERVICEABILITY
The term the JDK uses for
instrumentation inside the JVM

SPRING FRAMEWORK
An opensource collection of
tools for building web applications
in Java.

STATIC FIELD
A field that will be held in common
by all instances of a class.

STREAM
A sequence of data that is read
from a source and then written to
a new destination.

WEAKREFERENCE
References which do not prevent
their referents from being made
finalizable, finalized, and then
reclaimed by memory.

GLOSSARY

DZONE’S GUIDE TO JAVA DEVELOPMENT AND EVOLUTION

 Start applying for free

Claim your free post

Take your development
career to the next level.

Is your company hiring developers?

THESE COMPANIES ARE NOW HIRING ON DZONE JOBS:

From DevOps to Cloud Architecture, find great opportunities that

match your technical skills and passions on DZone Jobs.

Post your first job for free and start recruiting for the world's most

experienced developer community with code 'HIREDEVS1'.

https://jobs.dzone.com/?utm_source=javaguide&utm_medium=pdf&utm_campaign=backcover-apply
https://jobs.dzone.com/pages/6796-hire-experienced-developers-for-your-team?utm_source=javaguide&utm_medium=pdf&utm_campaign=backcover-apply

