
05.05.2017 Create an Android Library | Android Studio

https://developer.android.com/studio/projects/android-library.html 1/9

In this document

An Android library is structurally the same as an Android app module. It can include everything

needed to build an app, including source code, resource �les, and an Android manifest. However,

instead of compiling into an APK that runs on a device, an Android library compiles into an Android

Archive (AAR) �le that you can use as a dependency for an Android app module. Unlike JAR �les, AAR

�les can contain Android resources and a manifest �le, which allows you to bundle in shared

resources like layouts and drawables in addition to Java classes and methods.

A library module is useful in the following situations:

When you're building multiple apps that use some of the same components, such as activities, services, or UI

layouts.

When you're building an app that exists in multiple APK variations, such as a free and paid version and you need

the same core components in both.

In either case, simply move the �les you want to reuse into a library module then add the library as a dependency for

each app module. This page teaches you how to do both.

Create a library module

To create a new library module in your project, proceed as follows:

1. Click File > New > New Module.

2. In the Create New Module window that appears, click Android Library, then click Next.

There's also an option to create a Java Library, which builds a traditional JAR �le. While a JAR �le is useful for

many projects—especially when you want to share code with other platforms—it does not allow you to include

Android Developers

Create an Android Library

Create a library module

Add your library as a dependency

Publish non-default variants of your library

Choose resources to make public

Development considerations

Anatomy of an AAR �le

05.05.2017 Create an Android Library | Android Studio

https://developer.android.com/studio/projects/android-library.html 2/9

Android resources or manifest �les, which is very useful for code reuse in Android projects. So this guide

focuses on creating Android libraries.

3. Give your library a name and select a minimum SDK version for the code in the library, then click Finish.

Once the Gradle project sync completes, the library module appears in the Project panel on the left. If you don't see

the new module folder, make sure it's displaying the Android view

(https://developer.android.com/studio/projects/index.html#ProjectFiles).

Convert an app module to a library module

If you have an existing app module with all the code you want to reuse, you can turn it into a library module as

follows:

1. Open the build.gradle �le for the existing app module. At the top, you should see the following:

apply plugin: 'com.android.application'

2. Change the plugin assignment as shown here:

apply plugin: 'com.android.library'

3. Click Sync Project with Gradle Files.

That's it. The entire structure of the module remains the same, but it now operates as an Android library and the

build will now create an AAR �le instead of an APK.

Add your library as a dependency

To use your Android library's code in another app module, proceed as follows:

1. Add the library to your project in one of two ways (if you created the library module within the same project, then

it's already there and you can skip this step):

Add the compiled AAR (or JAR) �le:

1. Click File > New Module.

2. Click Import .JAR/.AAR Package then click Next.

3. Enter the location of the AAR or JAR �le then click Finish.

Import the library module to your project:

1. Click File > New > Import Module.

2. Enter the location of the library module directory then click Finish.

The library module is copied to your project, so you can actually edit the library code. If you want to maintain a

single version of the library code, then this is probably not what you want and you should instead import the

https://developer.android.com/studio/projects/index.html#ProjectFiles

05.05.2017 Create an Android Library | Android Studio

https://developer.android.com/studio/projects/android-library.html 3/9

compiled AAR �le as described above.

2. Make sure the library is listed at the top of your settings.gradle �le, as shown here for a library named "my-

library-module":

include ':app', ':my-library-module'

3. Open the app module's build.gradle �le and add a new line to the dependencies block as shown in the

following snippet:

dependencies {
 compile project(":my-library-module")
}

4. Click Sync Project with Gradle Files.

In this example above, the compile con�guration adds the library named my-library-module as a build

dependency for the entire app module. If you instead want the library only for a speci�c build variant

(https://developer.android.com/studio/build/build-variants.html), then instead of compile, use buildVariantNameCompile. For

example, if you want to include the library only in your "pro" product �avor, it looks like this:

productFlavors {
 pro { ... }
}
dependencies {
 proCompile project(":my-library-module")
}

Any code and resources in the Android library is now accessible to your app module, and the library AAR �le is

bundled into your APK at build time.

However, if you want to share your AAR �le separately, you can �nd it in project-name/module-

name/build/outputs/aar/ and you can regenerate it by clicking Build > Make Project.

Publish non-default variants of your library

By default, the library module publishes and exposes only the "release" build variant to other Android projects and

modules. That is, if an app module consumes the library as a dependency, Gradle targets only the "release" variant

of the library even when it's building a debug version of the app. However, you can tell Gradle to target the "debug"

build variant by adding the following to the library's build.gradle �le:

android {
 ...
 // Sets the "debug" build variant as the default variant
 // of the library that Gradle should publish.
 defaultPublishConfig "debug"
}

https://developer.android.com/studio/build/build-variants.html

05.05.2017 Create an Android Library | Android Studio

https://developer.android.com/studio/projects/android-library.html 4/9

Now Gradle always publishes the "debug" variant of the library to other modules. However, if the library module uses

product �avors (https://developer.android.com/studio/build/build-variants.html#product-�avors), you must con�gure the

defaultPublishConfig property and specify a build variant by its full con�guration name (otherwise, Gradle

doesn't publish your library because the traditional "release" and "debug" variants no longer exist). The following

sample targets a build variant that combines the "demo" product �avor and "debug" build type:

android {
 ...
 defaultPublishConfig "demoDebug"
}

Keep in mind, if you are building a release version of your app for publication, you need to change

defaultPublishConfig to use a release variant of the library. Alternatively, you can tell Gradle to publish and

expose all available variants of the library and con�gure each app variant to use only the one it needs. To tell Gradle

to publish all variants of the library, include the following line in the library's build.gradle �le:

android {
 ...
 // Tells Gradle to build all variants of the library. Note that this
 // may increase build times because Gradle must build multiple AARs,
 // instead of only one.
 publishNonDefault true
}

Note: When publishing all variants of your library to Maven, the Maven publishing plugin

(https://docs.gradle.org/current/userguide/publishing_maven.html) publishes the default variant of the library with each

additional variant as an additional artifact. Gradle differentiates each of those artifacts by setting its classi�er to

the variant name, such as "debug". However, this behavior is not fully supported by the Android plugin for Gradle,

and you should either publish a single variant of the library to Maven, or set publishNonDefault to true only

when publishing different variants of your library to local Android modules or projects.

Now you can con�gure the dependencies block in the app's build.gradle �le to target any of the available

variants of the library. The following code snippet in the app module's build.gradle �le instructs Gradle to use the

library's "demoDebug" variant when building the "demoDebug" version of the app and to use the library's

"fullRelease" variant when building the "fullRelease" version of the app:

android {...}
...

// Creates Gradle dependency configurations (https://docs.gradle.org/current/userguide/dependency_management.html#sub:configurations)
configurations {
 // Initializes placeholder configurations that the Android plugin can use when targeting
 // the corresponding variant of the app.
 demoDebugCompile {}
 fullReleaseCompile {}
 ...
}

https://developer.android.com/studio/build/build-variants.html#product-flavors
https://docs.gradle.org/current/userguide/publishing_maven.html
https://docs.gradle.org/current/userguide/dependency_management.html#sub:configurations

05.05.2017 Create an Android Library | Android Studio

https://developer.android.com/studio/projects/android-library.html 5/9

Choose resources to make public

All resources in a library default to public. To make all resources implicitly private, you must de�ne at least one

speci�c attribute as public. Resources include all �les in your project’s res/ directory, such as images. To prevent

users of your library from accessing resources intended only for internal use, you should use this automatic private

designation mechanism by declaring one or more public resources.

To declare a public resource, add a <public> declaration to your library’s public.xml �le. If you haven’t added

public resources before, you need to create the public.xml �le in the res/values/ directory of your library.

The following example code creates two public string resources with the names mylib_app_name and

mylib_public_string:

<resources>
 <public name="mylib_app_name" type="string"/>
 <public name="mylib_public_string" type="string"/>
</resources>

You should make public any resources that you want to remain visible to developers using your library. For example,

although most of the resources in the v7 appcompat library (https://developer.android.com/topic/libraries/support-

library/features.html#v7-appcompat) are private, attributes controlling the Toolbar widget are public to support material

design (https://developer.android.com/design/material/index.html).

Implicitly making attributes private not only prevents users of your library from experiencing code completion

suggestions from internal library resources but also allows you to rename or remove private resources without

breaking clients of your library. Private resources are �ltered out of code completion and the theme editor

(https://developer.android.com/studio/write/theme-editor.html), and Lint (https://developer.android.com/studio/write/lint.html) warns you

when you try to reference a private resource.

Development considerations

As you develop your library modules and dependent apps, be aware of the following behaviors and limitations.

Once you have added references to library modules to your Android app module, you can set their relative priority. At

build time, the libraries are merged with the app one at a time, starting from the lowest priority to the highest.

Resource merge con�icts

dependencies {
 // If the library configures multiple build variants using product flavors,
 // you must target one of the library's variants using its full configuration name.
 demoDebugCompile project(path: ':my-library-module', configuration: 'demoDebug')
 fullReleaseCompile project(path: ':my-library-module', configuration: 'fullRelease')
 ...
}

https://developer.android.com/topic/libraries/support-library/features.html#v7-appcompat
https://developer.android.com/design/material/index.html
https://developer.android.com/studio/write/theme-editor.html
https://developer.android.com/studio/write/lint.html

05.05.2017 Create an Android Library | Android Studio

https://developer.android.com/studio/projects/android-library.html 6/9

The build tools merge resources from a library module with those of a dependent app module. If a given resource

ID is de�ned in both modules, the resource from the app is used.

If con�icts occur between multiple AAR libraries, then the resource from the library listed �rst in the

dependencies list (toward the top of the dependencies block) is used.

To avoid resource con�icts for common resource IDs, consider using a pre�x or other consistent naming scheme

that is unique to the module (or is unique across all project modules).

A library module can include a JAR library

You can develop a library module that itself includes a JAR library; however you need to manually edit the

dependent app modules's build path and add a path to the JAR �le.

A library module can depend on an external JAR library

You can develop a library module that depends on an external library. (for example, the Maps external library). In

this case, the dependent app must build against a target that includes the external library (for example, the

Google APIs Add-On). Note also that both the library module and the dependent app must declare the external

library in their manifest �les, in a <uses- library> (https://developer.android.com/guide/topics/manifest/uses-library-

element.html) element.

Library modules cannot include raw assets

The tools do not support the use of raw asset �les (saved in the assets/ directory) in a library module. Any

asset resources used by an app must be stored in the assets/ directory of the app module itself.

The app module's minSdkVersion must be equal to or greater than the version de�ned by the library

A library is compiled as part of the dependent app module, so the APIs used in the library module must be

compatible with the platform version that the app module supports.

Each library module creates its own R class

When you build the dependent app modules, library modules are compiled into an AAR �le then added to the app

module. Therefore, each library has its own R class, named according to the library's package name. The R class

generated from main module and the library module is created in all the packages that are needed including the

main module's package and the libraries' packages.

Library modules may include their own ProGuard con�guration �le

You can enable code shrinking on your library by adding a ProGuard (https://developer.android.com/studio/build/shrink-

code.html) con�guration �le to your library that includes its ProGuard directives. The build tools embed this �le

within the generated AAR �le for the library module. When you add the library to an app module, the library's

ProGuard �le gets appended to the ProGuard con�guration �le (proguard.txt) of the app module.

By embedding a ProGuard �le in your library module, you ensure that app modules that depend on your library do

not have to manually update their ProGuard �les to use your library. When ProGuard runs on the Android app

module, it uses the directives from both the app module and the library so you should not run ProGuard on the

library alone.

To specify the name of your library's con�guration �le, add it to the consumerProguardFiles method, inside the

defaultConfig block of your library's build.gradle �le. For example, the following snippet sets lib-

https://developer.android.com/guide/topics/manifest/uses-library-element.html
https://developer.android.com/studio/build/shrink-code.html

05.05.2017 Create an Android Library | Android Studio

https://developer.android.com/studio/projects/android-library.html 7/9

proguard-rules.txt as the library's ProGuard con�guration �le:

android {
 defaultConfig {
 consumerProguardFiles 'lib-proguard-rules.txt'
 }
 ...
}

To ensure that your library's ProGuard rules do not apply unwanted shrinking side effects to app modules, only

include rules that disable ProGuard features that do not work with your library. Rules that attempt to aid

developers can con�ict with the existing code in an app module or its other libraries and therefore should not be

included. For example, your library's ProGuard �le can specify what code needs to be kept

(https://developer.android.com/studio/build/shrink-code.html#keep-code) during an app module's mini�cation.

Note: The Jack toolchain (https://source.android.com/source/jack.html#shrinking_and_obfuscation) provides support for

only some shrinking and obfuscation options with ProGuard.

Testing a library module is the same as testing an app (https://developer.android.com/studio/test/index.html)

The main difference is that the library and its dependencies are automatically included as dependencies of the

test APK. This means that the test APK includes not only its own code, but also the library's AAR and all its

dependencies. Because there is no separate "app under test," the androidTest task installs (and uninstalls) only

the test APK.

When merging multiple manifest �les (https://developer.android.com/studio/build/manifest-merge.html), Gradle follows the

default priority order and merges the library's manifest into the test APK's main manifest.

Anatomy of an AAR �le

The �le extension for an AAR �le is .aar, and the Maven artifact type should be aar as well. The �le itself is a zip

�le containing the following mandatory entries:

/AndroidManifest.xml

/classes.jar

/res/

/R.txt

Additionally, an AAR �le may include one or more of the following optional entries:

/assets/

/libs/name.jar

/jni/abi_name/name.so (where abi_name is one of the Android supported ABIs

(https://developer.android.com/ndk/guides/abis.html#sa))

https://developer.android.com/studio/build/shrink-code.html#keep-code
https://source.android.com/source/jack.html#shrinking_and_obfuscation
https://developer.android.com/studio/test/index.html
https://developer.android.com/studio/build/manifest-merge.html
https://developer.android.com/ndk/guides/abis.html#sa

05.05.2017 Create an Android Library | Android Studio

https://developer.android.com/studio/projects/android-library.html 8/9

/proguard.txt

/lint.jar

05.05.2017 Create an Android Library | Android Studio

https://developer.android.com/studio/projects/android-library.html 9/9

