11.05.2017 Certificate and Public Key Pinning - OWASP

Certificate and Public Key Pinning

From OWASP

Certificate and Public Key Pinning is a technical guide to implementing certificate and public key pinning as discussed at the
Virginia chapter's (https://www.owasp .org/index php/Virginia) presentation Securing Wireless Channels in the Mobile Space.
This guide is focused on providing clear, simple, actionable guidance for securing the channel in a hostile environment where
actors could be malicious and the conference of trust a liability. Additional presentation material included supplement with code
excerpts, Android sample program, iOS sample program, .Net sample program, and OpenSSL sample program.

A cheat sheet is available at Pinning Cheat Sheet.

Introduction
What's the problem?
= 2.1 Patient O
= 2.2 The Cures
= 3 What Is Pinning?
= 3.1 When Do You Pin?
= 3.2 When Do You Whitelist?
= 3.3 How Do You Pin?
= 4 What Should Be Pinned?
= 4.1 Encodings/Formats
= 42 Certificate
= 4.3 Public Key
= 4.4 Hashing
= 5 What About X509?
= 5.1 Mandatory Checks
= 5.2 Optional Checks
= 5.3 Public Key Checks
= 6 Examples of Pinning
= 6.1 HTTP pinning
= 6.2 Android
= 63 i0S
= 64 Net
= 6.5 OpenSSL
= 7 Pinning Alternatives
= 7.1 SRP
= 72 PSK
= 8 Miscellaneous
= 8.1 Ephemeral Keys
= 8.2 Pinning Gaps
= 8.3 No Relationship *@$!
= 8.4 More Information?
= 8.5 Format Conversions
= 9 References
= 10 Authors and Primary Editors

[]
[N

Introduction

Secure channels are a cornerstone to users and employees working remotely and on the go. Users and developers expect end-to-
end security when sending and receiving data - especially sensitive data on channels protected by VPN, SSL, or TLS. While
organizations which control DNS and CA have likely reduced risk to trivial levels under most threat models, users and
developers subjugated to other's DNS and a public CA hierarchy are exposed to non-trivial amounts of risk. In fact, history has
shown those relying on outside services have suffered chronic breaches in their secure channels.

The pandemic abuse of trust has resulted in users, developers and applications making security related decisions on untrusted
input. The situation is somewhat of a paradox: entities such as DNS and CAs are trusted and supposed to supply trusted input;
yet their input cannot be trusted. Relying on untrusted input for security related decisions is not only bad karma, it violates a
number of secure coding principals (see, for example, OWASP's Injection Theory and Data Validation).

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning 1/12

https://www.owasp.org/index.php/Virginia
https://www.owasp.org/images/8/8f/Securing-Wireless-Channels-in-the-Mobile-Space.ppt
https://www.owasp.org/images/f/f1/Pubkey-pin-supplement.pdf
https://www.owasp.org/images/1/1f/Pubkey-pin-android.zip
https://www.owasp.org/images/9/9a/Pubkey-pin-ios.zip
https://www.owasp.org/images/2/25/Pubkey-pin-dotnet.zip
https://www.owasp.org/images/f/f7/Pubkey-pin-openssl.zip
https://www.owasp.org/index.php/Pinning_Cheat_Sheet
https://www.owasp.org/index.php/Injection_Theory
https://www.owasp.org/index.php/Data_Validation

11.05.2017 Certificate and Public Key Pinning - OWASP

Pinning effectively removes the "conference of trust". An application which pins a certificate or public key no longer needs to
depend on others - such as DNS or CAs - when making security decisions relating to a peer's identity. For those familiar with
SSH, you should realize that public key pinning is nearly identical to SSH's strictHostKeyChecking option. SSH had it right
the entire time, and the rest of the world is beginning to realize the virtues of directly identifying a host or service by its public
key.

Others who actively engage in pinning include Google and its browser Chrome. Chrome was successful in detecting the
DigiNotar compromise which uncovered suspected interception by the Iranian government on its citizens. The initial report of
the compromise can be found at Is This MITM Attack to Gmail's SSL?
(https://productforums.google.com/d/topic/gmail/3J3r2JqFNTw/discussion); and Google Security's immediate response at An
update on attempted man-in-the-middle attacks (https://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-
in-middle .html).

What's the problem?

Users, developers, and applications expect end-to-end security on their secure channels, but some secure channels are not
meeting the expectation. Specifically, channels built using well known protocols such as VPN, SSL, and TLS can be vulnerable
to a number of attacks.

Examples of past failures are listed on the discussion tab for this article. This cheat sheet does not attempt to catalogue the
failures in the industry, investigate the design flaws in the scaffolding, justify the lack of accountability or liability with the
providers, explain the race to the bottom in services, or demystify the collusion between, for example, Browsers and CAs. For
additional reading, please visit PKI is Broken (http://www.cs.auckland.ac nz/~pgut001/pubs/pkitutorial pdf) and The Internet is
Broken (http://blog.cryptographyengineering.com/2012/02/how-to-fix-internet.html).

Patient 0

The original problem was the Key Distribution Problem. Insecure communications can be transformed into a secure
communication problem with encryption. Encrypted communications can be transformed into an identity problem with
signatures. The identity problem terminates at the key distribution problem. They are the same problem.

The Cures

There are three cures for the key distribution problem. First is to have first hand knowledge of your partner or peer (i.e., a peer,
server or service). This could be solved with SneakerNet. Unfortunately, SneakerNet does not scale and cannot be used to solve
the key distribution problem.

The second is to rely on others, and it has two variants: (1) web of trust, and (2) hierarchy of trust. Web of Trust and Hierarchy
of Trust solve the key distribution problem in a sterile environment. However, Web of Trust and Hierarchy of Trust each requires
us to rely on others - or confer trust. In practice, trusting others is showing to be problematic.

What Is Pinning?

Pinning is the process of associating a host with their expected X509 certificate or public key. Once a certificate or public key is
known or seen for a host, the certificate or public key is associated or 'pinned' to the host. If more than one certificate or public
key is acceptable, then the program holds a pinset (taking from Jon Larimer and Kenny Root Google 1/O talk
(https://developers.google.com/events/io/sessions/gooio2012/107/)). In this case, the advertised identity must match one of the
elements in the pinset.

A host or service's certificate or public key can be added to an application at development time, or it can be added upon first
encountering the certificate or public key. The former - adding at development time - is preferred since preloading the certificate
or public key out of band usually means the attacker cannot taint the pin. If the certificate or public key is added upon first
encounter, you will be using key continuity. Key continuity can fail if the attacker has a privileged position during the first
encounter.

Pinning leverages knowledge of the pre-existing relationship between the user and an organization or service to help make better
security related decisions. Because you already have information on the server or service, you don't need to rely on generalized
mechanisms meant to solve the key distribution problem. That is, you don't need to turn to DNS for name/address mappings or
CAs for bindings and status. One exception is revocation and it is discussed below in Pinning Gaps.

It is also worth mention that Pinning is not Stapling. Stapling sends both the certificate and OCSP responder information in the
same request to avoid the additional fetches the client should perform during path validations.

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning 2/12

https://productforums.google.com/d/topic/gmail/3J3r2JqFNTw/discussion
https://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-in-middle.html
http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf
http://blog.cryptographyengineering.com/2012/02/how-to-fix-internet.html
https://developers.google.com/events/io/sessions/gooio2012/107/

11.05.2017 Certificate and Public Key Pinning - OWASP

When Do You Pin?

You should pin anytime you want to be relatively certain of the remote host's identity or when operating in a hostile
environment. Since one or both are almost always true, you should probably pin all the time.

A perfect case in point: during the two weeks or so of preparation for the presentation and cheat sheet, we've observed three
relevant and related failures. First was Nokia/Opera willfully breaking the secure channel
(http://gaurangkp.wordpress.com/2013/01/09/nokia-https-mitm/); second was DigiCert issuing a code signing certificate for
malware (http://blog.malwarebytes.org/intelligence/2013/02/digital-certificates-and-malware-a-dangerous-mix/); and third was
Bit9's loss of its root signing key (http://krebsonsecurity.com/2013/02/security-firm-bit9-hacked-used-to-spread-malware/). The
environment is not only hostile, it's toxic.

When Do You Whitelist?

If you are working for an organization which practices "egress filtering" as part of a Data Loss Prevention (DLP) strategy, you
will likely encounter Interception Proxies. I like to refer to these things as "good" bad guys (as opposed to "bad" bad guys)
since both break end-to-end security and we can't tell them apart. In this case, do not offer to whitelist the interception proxy
since it defeats your security goals. Add the interception proxy's public key to your pinset after being instructed to do so by the
folks in Risk Acceptance.

Note: if you whitelist a certificate or public key for a different host (for example, to accommodate an interception proxy), you
are no longer pinning the expected certificates and keys for the host. Security and integrity on the channel could suffer, and it
surely breaks end-to-end security expectations of users and organizations.

For more reading on interception proxies, the additional risk they bestow, and how they fail, see Dr. Matthew Green's How do
Interception Proxies fail? (http://blog.cryptographyengineering.com/2012/03/how-do-interception-proxies-fail .html) and Jeff
Jarmoc's BlackHat talk SSL/TLS Interception Proxies and Transitive Trust (https://www.blackhat.com/html/bh-eu-12/bh-eu-12-
archives .html#jarmoc).

How Do You Pin?

The idea is to re-use the existing protocols and infrastructure, but use them in a hardened manner. For re-use, a program would
keep doing the things it used to do when establishing a secure connection.

To harden the channel, the program would take advantage of the onconnect callback offered by a library, framework or
platform. In the callback, the program would verify the remote host's identity by validating its certificate or public key. While
pinning does not have to occur in an onconnect callback, its often most convenient because the underlying connection
information is readily available.

What Should Be Pinned?

The first thing to decide is what should be pinned. For this choice, you have two options: you can (1) pin the certificate; or (2)
pin the public key. If you choose public keys, you have two additional choices: (a) pin the subjectPublickeyInfo; or (b) pin
one of the concrete types such as RSAPublicKey Or DSAPublicKey.

The three choices are explained below in more detail. I would encourage you to pin the subjectPublickeyInfo because it has
the public parameters (such as {e,n} for an RSA public key) and contextual information such as an algorithm and OID. The
context will help you keep your bearings at times, and Figure 1 below shows the additional information available.

Encodings/Formats

For the purposes of this article, the objects are in X509-compatible presentation format (PKCS#1 defers to X509, both of which
use ASN.1). If you have a PEM encoded object (for example, ----- BEGIN CERTIFICATE-—--- JRS— END CERTIFICATE--———),
then convert the object to DER encoding. Conversion using OpenSSL is offered below in Format Conversions.

A certificate is an object which binds an entity (such as a person or organization) to a public key via a signature. The certificate
is DER encoded, and has associated data or attributes such as Subject (who is identified or bound), Issuer (who signed it),
Validity (NotBefore and NotAfter), and a Public Key.

A certificate has a subjectPublicKeyInfo. The subjectPublicKeyInfo is a key with additional information. The ASN.1 type
includes an Algorithm ID, a Version, and an extensible format to hold a concrete public key. Figures 1 and 2 below show
different views of the same RSA key, which is the subjectPublicKeyInfo. The key is for the site random.org
(https://www.random.org), and it is used in the sample programs and listings below.

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning 3/12

http://gaurangkp.wordpress.com/2013/01/09/nokia-https-mitm/
http://blog.malwarebytes.org/intelligence/2013/02/digital-certificates-and-malware-a-dangerous-mix/
http://krebsonsecurity.com/2013/02/security-firm-bit9-hacked-used-to-spread-malware/
http://blog.cryptographyengineering.com/2012/03/how-do-interception-proxies-fail.html
https://www.blackhat.com/html/bh-eu-12/bh-eu-12-archives.html#jarmoc
https://www.random.org/

11.05.2017 Certificate and Public Key Pinning - OWASP

800 | | random-org.der
800 [pubkey-pin-openss| — bash — ttys000 e A|pBA 8z 81 22 3@ 6D A B9 24 86 4G 66 F7 6D A1 Al |[ac "a *0HO”
riemann: :pubkey-pin-openssls dumpasnl.exe random-org.der L 16|81 65 BA B3 62 A1 AF @8 30 &2 61 B4 B2 82 A1 a1 © ac G
2 23? SEZEEﬁéscé . 32 |88 B3 5E A3 AD AF 40 BS DB 86 96 54 83 6F 3C 85| | =+@=@Lael dfo<d
; 45 |5A 54 5B 1F BC C8 AF BL 9E 38 21 3B AC 4D 55 C3| [ZT[»@2081; HUy
o OJECT IDENTIFIER rsafncryption (12 840 113349 1 1 1) 64| F2 FL 9D F6 UE EA 2E AD 67 F7 BA 99 @1 31 B6 BC | |UDU"RE.=g" & 127
: 1 5 |AC 14 91 16 AC CB 83 86 2F 8A 59 31 99 OF 19 CE| |" & “»E0/ Y18f E
19 271: BIT STRING, encapsulates { 05 |B2 7C BE A4 AE BE 31 21 F7 F3 29 21 94 64 E6 57 || |é™Eel! 031 idEW
24 266: SEQUENCE { 112 |20 BF 66 ES E2 29 EA CZ 99 20 D7 95 04 F2 30 FB | | ,@fE,)[-6-41fl=é
28 2571 T e A8 AD AF 4C BG DB 86 06 5A 83 6F 3C 85 125 |FE 72 B6 CE EF 45 7E BA BB 9@ 29 61 9E A3 95 B3| |, r2E0E~[&)ad il
: A 54 5B 1F 6C CB AF B 9F 38 21 3B AC 4D 55 C3 144|608 95 51 84 9D D6 21 45 89 AZ CE BA 4F 74 70 CC| | *&0flb- | EGHE[02}A
F2 F1 9D F6 DE E8 2E AD 67 F7 GA 99 @1 31 B6 BC 168 |EB 74 B2 A6 BS BC 27 06 93 17 BD 74 B2 13 5F 58 | |lz<q2 'ai Rz _P
AC 1A 91 16 AC C8 83 86 2F @@ 59 31 99 DF 19 CE 176 |06 31 VE 5D BF B9 D4 ES 59 36 E4 18 96 7B 91 14 | |Al~]@n-AY6s &{&
82 7C BE AA AE BE 31 21 F7 F3 20 21 94 64 E6 57 192 |5 C7 46 FE BD 50 B7 16 5B 6B 23 AD A7 78 BB 8B | |P=F,] [ki#=Bp
ig 3; :: 52 Ei i;‘ 5’2 ;i :3 5'; g; :3 g: ;; gz [:: 275 |33 23 8C 95 5A D1 79 A9 24 59 C4 71 80 19 C1 11 | |3#a0a-vesyfah |
60 95 51 B4 9D DB 21 45 89 A2 Cb DA AF Tn 70 CC 224 |B4 EF 7B ES 3E 59 72 EA 60 A6 B4 11 24 06 DA 38 | [¥0{A>Yrilqa § /8
: [Another 129 bytes skipped] 248 |CF 5@ D2 F4 FD A4 D1 CD 52 FL DA 9F D5 18 4D 91 | |e %0 "5-0R0/0- M&
289 3 INTEGER 65537 ZEG |43 44 55 CD 7B 32 6B @2 52 53 29 A3 52 53 14 76| [£DUD{2& RS £RS {
: 3 272 |[E@ BT AS BC 86 @9 66 DC 84 F1 @D 72 3C E7 EE D5 | |fZs20 f.f0 r=A0°
R 4 285 |43 B2 @3 B1 B9 A1 C
® warnings, @ errors. Unsigned Int = | [big =) (select some data) =)+

Figure 1: subjectPublicKeyInfo dumped with dumpans| B.0ut of 734 byses

Figure 2: subjectPublicKeyInfo under a hex editor

The concrete public key is an encoded public key. The key format will usually be specified elsewhere - for example, PKCS#1 in
the case of RSA Public Keys. In the case of an RSA public key, the type is RSAPublicKey and the parameters {e,n} will be
ASN.1 encoded. Figures 1 and 2 above clearly show the modulus (n at line 28) and exponent (e at line 289). For DSA, the
concrete type is DSAPublicKey and the ASN.1 encoded parameters would be {p,q,g,y}.

Final takeaways: (1) a certificate binds an entity to a public key; (2) a certificate has a subjectPublicKeyInfo; and (3) a
subjectPublicKeyInfo has an concrete public key. For those who want to learn more, a more in-depth discussion from a
programmer's perspective can be found at the Code Project's article Cryptographic Interoperability: Keys
(http://www.codeproject.com/Articles/25487/Cryptographic-Interoperability-Keys).

Certificate

The certificate is easiest to pin. You can fetch the certificate out of band for the website, have the IT folks
email your company certificate to you, use openssl s_client to retrieve the certificate etc. When the e
certificate expires, you would update your application. Assuming your application has no bugs or security Coertificeton
defects, the application would be updated every year or two. e

e’

At runtime, you retrieve the website or server's certificate in the callback. Within the callback, you compare
the retrieved certificate with the certificate embedded within the program. If the comparison fails, then fail Certificate
the method or function.

There is a downside to pinning a certificate. If the site rotates its certificate on a regular basis, then your application would need
to be updated regularly. For example, Google rotates its certificates, so you will need to update your application about once a
month (if it depended on Google services). Even though Google rotates its certificates, the underlying public keys (within the
certificate) remain static.

Public Key

Public key pinning is more flexible but a little trickier due to the extra steps necessary to extract the public
key from a certificate. As with a certificate, the program checks the extracted public key with its embedded
copy of the public key.

There are two downsides two public key pinning. First, its harder to work with keys (versus certificates) Public Key
since you usually must extract the key from the certificate. Extraction is a minor inconvenience in Java and

Net, buts its uncomfortable in Cocoa/CocoaTouch and OpenSSL. Second, the key is static and may violate

key rotation policies.

Hashing

While the three choices above used DER encoding, its also acceptable to use a hash of the information (or other transforms). In
fact, the original sample programs were written using digested certificates and public keys. The samples were changed to allow a
programmer to inspect the objects with tools like dumpasn1 and other ASN.1 decoders.

Hashing also provides three additional benefits. First, hashing allows you to anonymize a certificate or public key. This might be
important if you application is concerned about leaking information during decompilation and re-engineering.

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning 4/12

https://www.owasp.org/index.php/File:Random-org-der-dump.png
https://www.owasp.org/index.php/File:Random-org-der-hex.png
https://www.owasp.org/index.php/File:Pin-cert.png
https://www.owasp.org/index.php/File:Pin-pubkey.png
http://www.codeproject.com/Articles/25487/Cryptographic-Interoperability-Keys

11.05.2017 Certificate and Public Key Pinning - OWASP

Second, a digested certificate fingerprint is often available as a native API for many libraries, so its convenient to use.

Finally, an organization might want to supply a reserve (or back-up) identity in case the primary identity is compromised.
Hashing ensures your adversaries do not see the reserved certificate or public key in advance of its use. In fact, Google's IETF
draft websec-key-pinning uses the technique.

What About X509?

PKI{X} and the Internet form an intersection. What Internet users expect and what they receive from CAs could vary wildly.
For example, an Internet user has security goals, while a CA has revenue goals and legal goals. Many are surprised to learn that
the user is often required to perform host identity verification even though the CA issued the certificate (the details are buried in
CA warranties on their certificates and their Certification Practice Statement (CPS)).

There are a number of PKI profiles available. For the Internet, "Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL)", also known as RFC 5280 (http://tools.ietf.org/rfc/rfc5280.txt), is of interest. Since a
certificate is specified in the ITU's X509 standard, there are lots of mandatory and optional fields available for validation from
both bodies. Because of the disjoint goals among groups, the next section provides guidance.

Mandatory Checks

All X509 verifications must include:

= A path validation check. The check verifies all the signatures on certificates in the chain are valid under a given PKI. The
check begins at the server or service's certificate (the leaf), and proceeds back to a trusted root certificate (the root).

= A validity check, or the notBefore and notAfter fields. The notafter field is especially important since a CA will not
warrant the certificate after the date, and it does not have to provide CRL/OCSP updates after the date.

= Revocation status. As with notAfter, revocation is important because the CA will not warrant a certificate once it is listed
as revoked. The IETF approved way of checking a certificate's revocation is OCSP and specified in RFC 2560
(http://tools.ietf.org/rfc/rfc2560.txt).

Optional Checks

[Mulling over what else to present, and the best way to present it. Subject name? DNS lookups? Key Usage? Algorithms?
Geolocation based on IP? Check back soon.] In the model which pre-dated PKIX RFC-5280, X.509v1 there was strong binding
of the certificate Subject name to the X.500 Directory. With the update to X.509v3, the Directory is still the standard for
authentication of caCertificate attributes, versus accepting a self signed root. Geo-location is important, the fake certificate for
Google was given a location of Florida, instead of Mountain View, CA. The binding of the certificate to the Directory can
anchor the root caCertificate, in effect "pin" it, to a valid entity that can have demonstrable attributes such as location. This is
detailed in RFC-1255. Additional fields specified, such as the subject alternative field, for example a RFC-822 email address, or
DNS name, can be located in the DNS, but the actual heavy lifting is done by the X.500 Directory, which is used currently as a
cross-certificate trust conduit at the Federal Bridge between major communities of interest, that are not Internet focused. While
those cross-certificates are valuable in validation between trust communities, a self-signed root, still needs to be either pinned,
curated in trust bundle such as in web browser software secure storage or represented by a federated community. The Directory
can play a role to fill in gaps to validate caCertificates, either locally, or nationally under an administrative domain such as
c=US. By divorcing the subject from the Directory entry, problems begin to arise in which pinning plays a key role to ensure
that client and server have the same reference points.

Public Key Checks

Quod vide (q.v.). Verifying the identity of a host with knowledge of its associated/expected public key is pinning.

Examples of Pinning

This section demonstrates certificate and public key pinning in Android Java, i0OS, .Net, and OpenSSL. All programs attempt to
connect to random.org (https://www.random.org) and fetch bytes (Dr. Mads Haahr participates in AOSP's pinning program, so
the site should have a static key). The programs enjoy a pre-existing relationship with the site (more correctly, a priori
knowledge), so they include a copy of the site's public key and pin the identity on the key.

Parameter validation, return value checking, and error checking have been omitted in the code below, but is present in the
sample programs. So the sample code is ready for copy/paste. By far, the most uncomfortable languages are C-based: iOS and
OpenSSL.

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning 5/12

http://tools.ietf.org/rfc/rfc5280.txt
http://tools.ietf.org/rfc/rfc2560.txt
https://www.random.org/

11.05.2017 Certificate and Public Key Pinning - OWASP

HTTP pinning

RFC 7469 (http://www.rfc-editor.org/rfc/rfc7469.txt) introduced a new HTTP header that allows SSL servers to declare hashes
of their certificates with time scope in which these certificates should not be changed. For example:

Public-Key-Pins: max-age=2592000;
pin-sha256="E9CZ9INDbd+2eRQozYqgqbQ2yXLVKB9+xcprMF+44Ulg=";
pin-sha256="LPJNul+wow4m6DsgxbninhsWHlwfp0JecwQzYpOLmCQ=";
report-uri="http://example.com/pkp-report"

Please note that RFC 7469 (http://www.rfc-editor.org/rfc/rfc7469.txt) is controversial since it allows overrides for locally
installed authorities. That is, it allows an adversary or other party who successfully phishes the user to override a known good
pinset with non-authentic or fraudulent information. Second, the reporting mechanism is suppressed from broken pinsets, so a
complying user agent will be complicit in the cover up after the fact. That is, the reporting of the broken pinset is called out as
MUST NOT report [1 (https://en.wikipedia.org/w/index .php?title=HTTP_Public_Key_Pinning)].

Android

This example is using the concept from developer.android.com unknown CA implementation document
(https://developer.android.com/training/articles/security-ssl.html#UnknownCa).
Basically you can teach HttpsURLConnection to trust a specific set of CAs.

private static KeyPinStore instance = null;
private SSLContext sslContext = SSLContext.getInstance("TLS");

public static synchronized KeyPinStore getInstance() throws CertificateException, IOException, KeyStoreException, NoSuchAlgorn
if (instance == null){
instance = new KeyPinStore();

}

return instance;

}

private KeyPinStore() throws CertificateException, IOException, KeyStoreException, NoSuchAlgorithmException, KeyManagementExo
// Load CAs from an InputStream
// (could be from a resource or ByteArrayInputStream or ...)
CertificateFactory cf = CertificateFactory.getInstance("X.509");
// randomCA.crt should be in the Assets directory
InputStream calnput = new BufferedInputStream(MainActivity.context.getAssets().open("randomCA.crt"));
Certificate ca;
try {
ca = cf.generateCertificate(caInput);
System.out.println("ca=" + ((X509Certificate) ca).getSubjectDN());
} finally {
calnput.close();

}

// Create a KeyStore containing our trusted CAs

String keyStoreType = KeyStore.getDefaultType();
KeyStore keyStore = KeyStore.getInstance(keyStoreType);
keyStore.load(null, null);
keyStore.setCertificateEntry("ca", ca);

// Create a TrustManager that trusts the CAs in our KeyStore

String tmfAlgorithm = TrustManagerFactory.getDefaultAlgorithm();
TrustManagerFactory tmf = TrustManagerFactory.getInstance(tmfAlgorithm);
tmf.init (keyStore);

// Create an SSLContext that uses our TrustManager
// SSLContext context = SSLContext.getInstance("TLS");
sslContext.init(null, tmf.getTrustManagers(), null);

public SSLContext getContext(){
return sslContext;

You can check this Android app pubkey-pin-android (https://github.com/riramar/pubkey-pin-android) on Github as full example.
iOS

An open-source SSL pinning library for iOS and OS X was released at Black Hat 2015, which provides an easy-to-use API for
deploying pinning within an App: https://github.com/datatheorem/TrustKit .

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning 6/12

http://www.rfc-editor.org/rfc/rfc7469.txt
http://example.com/pkp-report
http://www.rfc-editor.org/rfc/rfc7469.txt
https://en.wikipedia.org/w/index.php?title=HTTP_Public_Key_Pinning
https://developer.android.com/training/articles/security-ssl.html#UnknownCa
https://github.com/riramar/pubkey-pin-android
https://github.com/datatheorem/TrustKit

11.05.2017 Certificate and Public Key Pinning - OWASP

Otherwise and when using NSURLConnection, iOS pinning is performed through a NSURLConnectionDelegate. The delegate

must implement connection:canAuthenticateAgainstProtectionSpace: and

connection:didReceiveAuthenticationChallenge:. Within connection:didReceiveAuthenticationChallenge:, the

delegate must call secTrustEvaluate to perform customary X509 checks.

Download: iOS sample program.

- (IBAction)fetchButtonTapped: (id)sender

{

NSString* requestString = @"https://www.random.org/integers/?

num=16&min=0&max=255&col=16&base=16&format=plain&rnd=new";
NSURL* requestUrl = [NSURL URLWithString:requestString];
NSURLRequest* request = [NSURLRequest requestWithURL:requestUrl
cachePolicy:NSURLRequestReloadIgnoringLocalCacheData
timeoutInterval:10.0f];

NSURLConnection* connection = [[NSURLConnection alloc] initWithRequest:request delegate:self];

}

- (BOOL)connection: (NSURLConnection *)connection canAuthenticateAgainstProtectionSpace:
(NSURLProtectionSpace*)space

{

return [[space authenticationMethod] isEqualToString: NSURLAuthenticationMethodServerTrust];

}

- (void)connection: (NSURLConnection *)connection didReceiveAuthenticationChallenge:
(NSURLAuthenticationChallenge *)challenge

{
if ([[[challenge protectionSpace] authenticationMethod] isEqualToString: NSURLAuthenticationMethodServerTrust])
{
do
{
SecTrustRef serverTrust = [[challenge protectionSpace] serverTrust];
if(nil == serverTrust)

break; /* failed */

OSStatus status = SecTrustEvaluate(serverTrust, NULL);
if (! (errSecSuccess == status))
break; /* failed */

SecCertificateRef serverCertificate = SecTrustGetCertificateAtIndex(serverTrust, 0);
if(nil == serverCertificate)
break; /* failed */

CFDataRef serverCertificateData = SecCertificateCopyData(serverCertificate);
[(id)serverCertificateData autorelease];
if(nil == serverCertificateData)

break; /* failed */

const UInt8* const data = CFDataGetBytePtr(serverCertificateData);
const CFIndex size = CFDataGetLength(serverCertificateData);
NSData* certl = [NSData dataWithBytes:data length:(NSUInteger)size];

NSString *file = [[NSBundle mainBundle] pathForResource:@"random-org" ofType:@"der"];
NSData* cert2 = [NSData dataWithContentsOfFile:file];

if(nil == certl || nil == cert2)
break; /* failed */

const BOOL equal = [certl isEqualToData:cert2];
if(!equal)
break; /* failed */

// The only good exit point
return [[challenge sender] useCredential: [NSURLCredential credentialForTrust: serverTrust]
forAuthenticationChallenge: challenge];
} while(0);

// Bad dog
return [[challenge sender] cancelAuthenticationChallenge: challenge];

Net pinning can be achieved by using servicePointManager as shown below.

Download: .Net sample program.

E// Encoded RSAPublicKey

private static String PUB_KEY = "30818902818100C4A06B7B52F8D17DC1CCB47362" +
, "C64AB799AAE19E245A7559E9CEEC7D8AA4DF07CB0B21FDFD763C63A313A668FE9D764E" +
, "D913C51A676788DB62AF624F422C2F112C1316922AA5D37823CD9F43D1FC54513D14B2"

+

"9E36991F08A042C42EAAEEESFESE2CB10167174A359CEBF6FACC2CI9CA933AD403137EE" +
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning

712

https://www.owasp.org/images/9/9a/Pubkey-pin-ios.zip
https://www.owasp.org/images/2/25/Pubkey-pin-dotnet.zip

11.05.2017 Certificate and Public Key Pinning - OWASP
"2C3F4CBED9460129C72B0203010001";

'
'
bublic static void Main(string[] args)
i
1 ServicePointManager.ServerCertificatevValidationCallback = PinPublicKey;
| WebRequest wr = WebRequest.Create("https://encrypted.google.com/");
| wWr.GetResponse();

}
bublic static bool PinPublicKey(object sender, X509Certificate certificate, X509Chain chain,
. SslPolicyErrors sslPolicyErrors)

i
i if (null == certificate)

return false;

'

:

! String pk = certificate.GetPublicKeyString();
1 1f (pk.Equals(PUB_KEY))

, return true;
]

'

'

// Bad dog
return false;

OpenSSL

Pinning can occur at one of two places with OpenSSL. First is the user supplied verify callback. Second is after the
connection is established via SsL_get_peer_certificate. Either method will allow you to access the peer's certificate.

Though OpenSSL performs the X509 checks, you must fail the connection and tear down the socket on error. By design, a
server that does not supply a certificate will result in x509_v_ok with a NULL certificate. To check the result of the customary
verification: (1) you must call sSL_get verify result and verify the return code is X509 v_0k; and (2) you must call
SSL_get peer certificate and verify the certificate is non-NULL.

Download: OpenSSL sample program.

:int pkp_pin_peer_pubkey(SSL* ssl)
it
! if (NULL == ssl) return FALSE;

X509* cert = NULL;
FILE* fp = NULL;

/* Scratch */
int lenl = 0, len2

=0;
unsigned char *buffl =

NULL, *buff2 = NULL;

/* Result is returned to caller */
int ret = 0, result = FALSE;

do
{
/* http://www.openssl.org/docs/ssl/SSL_get_peer certificate.html */
cert = SSL_get_peer_certificate(ssl);
if(!(cert != NULL))
break; /* failed */

/* Begin Gyrations to get the subjectPublicKeyInfo */
/* Thanks to Viktor Dukhovni on the OpenSSL mailing list */

'

'

'

!

!

!

'

!

!

'

'

'

:

i /* http://groups.google.com/group/mailing.openssl.users/browse_thread/thread/d61858dael02c6c7 */
: lenl = i2d X509 PUBKEY (X509 get X509 PUBKEY(cert), NULL);

! if(!(lenl > 0))

' break; /* failed */

!
!
'
'
'
!
!
!
'
!
!
'

/* scratch */
unsigned char* temp = NULL;

/* http://www.openssl.org/docs/crypto/buffer.html */
buffl = temp = OPENSSL_malloc(lenl);
if (! (buffl != NULL))

break; /* failed */

/* http://www.openssl.org/docs/crypto/d2i_X509.html */
len2 = i2d X509 PUBKEY (X509 get X509 PUBKEY(cert), &temp);

/* These checks are verifying we got back the same values as when we sized the buffer. */
/* Its pretty weak since they should always be the same. But it gives us something to test. */
if(!((lenl == len2) && (temp != NULL) && ((temp - buffl) == lenl)))

break; /* failed */
/* End Gyrations */
/* See the warning above!!! */

/* http://pubs.opengroup.org/onlinepubs/009696699/functions/fopen.html */
fp = fopen("random-org.der", "rx");

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning 8/12

https://www.owasp.org/images/f/f7/Pubkey-pin-openssl.zip

11.05.2017 Certificate and Public Key Pinning - OWASP

if(NULL ==fp) {
fp = fopen("random-org.der",

r");

if (1(NULL != fp))
break; /* failed */

/* Seek to eof to determine the file's size

/* http://pubs.opengroup.org/onlinepubs/009696699/functions/fseek.html

ret = fseek(fp, 0, SEEK_END);
if(1(0 == ret))
break; /* failed */

/* Fetch the file's size

/* http://pubs.opengroup.org/onlinepubs/009696699/functions/ftell.html

long size = ftell(fp);

/* Arbitrary size, but should be relatively small (less than 1K or 2K)

if(!(size != -1 && size > 0 && size < 2048))
break; /* failed */

/* Rewind to beginning to perform the read

/* http://pubs.opengroup.org/onlinepubs/009696699/functions/fseek.html

ret = fseek(fp, 0, SEEK_SET);
if(!(0 == ret))
break; /* failed */

/* Re-use buff2 and len2 */
buff2 = NULL; len2 = (int)size;

/* http://www.openssl.org/docs/crypto/buffer.html */
buff2 = OPENSSL_malloc(len2);
if(!(buff2 != NULL))

break; /* failed */

*/
*/

*/
*/

*/

*/
*/

/* http://pubs.opengroup.org/onlinepubs/009696699/functions/fread.html */

ret = (int)fread(buff2, (size_t)len2, 1, fp);
if(!(ret == 1))
break; /* failed */

/* Re-use size. MIN and MAX macro below... */
size = lenl < len2 ? lenl : len2;

[rFxkhkkkkkkkkkkkkkkxkxhkkkx /
VAL] PAYDIRT *kkkk [

[hhkhkkkkkhkkkkkkkkkkkkkkkkx /

if(lenl != (int)size || len2 != (int)size || 0 != memcmp(buffl, buff2, (size t)size))

break; /* failed */

/* The one good exit point */
result = TRUE;

} while(0);

if(fp != NULL)
fclose(fp);

/* http://www.openssl.org/docs/crypto/buffer.html */
if (NULL != buff2)
OPENSSL_free(buff2);

/* http://www.openssl.org/docs/crypto/buffer.html */
if (NULL != buffl)
OPENSSL_free(buffl);

/* http://www.openssl.org/docs/crypto/X509_new.html */
if (NULL != cert)
X509_free(cert);

1
:
1
1
:
:
:
:
:
:
1
:
1
1
:
:
:
:
:
:
1
:
1
‘
, /* Returns number of elements read, which should be 1 */
:
:
:
:
:
:
1
:
1
1
:
:
:
:
:
:
1
:
1
1
:
:
'
' return result;
:

Pinning Alternatives

Not all applications use split key cryptography. Fortunately, there are protocols which allow you to set up a secure channel based
on knowledge of passwords and pre-shared secrets (rather than putting the secret on the wire in a basic authentication scheme).

Two are listed below - SRP and PSK. SRP and PSK have 88 cipher suites assigned to them by IANA for TLS
(http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-3), so there's no shortage of choices.

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning

9/12

http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-3

11.05.2017 Certificate and Public Key Pinning - OWASP

8006 Transport Layer Security (TLS) Parameters
[alr][] [#] [@] (& www.ianaorg & | Reader |

0xCo,0x1A | TLS_SRAP_SHA WITH_3DES_EDE_CBC_SHA [RFC5054]
0xco,0x18 | TLS_SAP_SHA_RSA WITH_3DES_EDE_CBC_SHA [RFC5054]
0xCo,0x1C | TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA [REC5054]
0xC0,0x1D | TLS_SRP_SHA_WITH_AES_128_CBC_SHA [REC5054]
0xC0,0x1E | TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA [REC5054]
0xC0,0x1F | TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA [REC5054]
0xC0,0x20 | TLS_SRP_SHA_WITH_AES_256_CBC_SHA [REC5054]
0xC0,0x21 | TLS_SRP_SHA_RSA _WITH_AES_256_CBC_SHA [RFC5054]
0xC0,0x22 | TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA [RFC5054]
0xC0,0x23 | TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 [RFC5289]
0xC0,0x24 | TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 [RFC5289]
0xC0,0x25 | TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
0xC0,0x26 | TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384

ol

[RFC5289]
[REC5289]

Figure 3: IANA reserved cipher suites for SRP and PSK

<|<|<|<|<|<|<|<|<|<|<|<|<

SRP

Secure Remote Password (SRP) is a Password Authenticated Key Exchange (PAKE) by Thomas Wu based upon Diffie-
Hellman. The protocol is standardized in RFC 5054 (https://tools.ietf.org/rfc/rfc5054.txt) and available in the OpenSSL library
(among others). In the SRP scheme, the server uses a verifier which consists of a {salt, hash(password)} pair. The user has
the password and receives the salt from the server. With lots of hand waving, both parties select per-instance random values

(nonces) and execute the protocol using gf(Sa/ + password)lverifier} + nonces pather than traditional Diffie-Hellman using g
Diffie-Hellman based schemes are part of a family of problems based on Discrete Logs (DL), which

are logarithms over a finite field. DL schemes are appealing because they are known to be hard
(unless P=NP, which would cause computational number theorists to have a cow).

PSK

P=NP!!! -

PSK is Pre-Shared Key and specified in RFC 4279 (https://tools.ietf.org/rfc/rfc4279.txt) and RFC

4764 (https://tools.ietf.org/rfc/rfc4764 txt). The shared secret is used as a pre-master secret in TLS-

PSK for SSL/TLS; or used to key a block cipher in EAP-PSK. EAP-PSK is designed for authentication over insecure networks
such as IEEE 802.11.

Miscellaneous
This sections covers administrivia and miscellaneous items related to pinning.

Ephemeral Keys

Ephemeral keys are temporary keys used for one instance of a protocol execution and then thrown away. An ephemeral key has
the benefit of providing forward secrecy, meaning a compromise of the site or service's long term (static) signing key does not
facilitate decrypting past messages because the key was temporary and discarded (once the session terminated).

Ephemeral keys do not affect pinning because the Ephemeral key is delivered in a separate serverkeyExchange message. In
addition, the ephemeral key is a key and not a certificate, so it does not change the construction of the certificate chain. That is,
the certificate of interest will still be located at certificates[0].

Pinning Gaps

There are two gaps when pinning due to reuse of the existing infrastructure and protocols. First, an explicit challenge is not sent
by the program to the peer server based on the server's public information. So the program never knows if the peer can actually
decrypt messages. However, the shortcoming is usually academic in practice since an adversary will receive messages it can't
decrypt.

Second is revocation. Clients don't usually engage in revocation checking, so it could be possible to use a known bad certificate
or key in a pinset. Even if revocation is active, Certificate Revocation Lists (CRLs) and Online Certificate Status Protocol
(OCSP) can be defeated in a hostile environment. An application can take steps to remediate, with the primary means being
freshness. That is, an application should be updated and distributed immediately when a critical security parameter changes.

No Relationship A @$!

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning 10/12

https://www.owasp.org/index.php/File:Pin-iana-assigned.png
https://www.owasp.org/index.php/File:Homer-p-np.jpg
https://tools.ietf.org/rfc/rfc5054.txt
https://tools.ietf.org/rfc/rfc4279.txt
https://tools.ietf.org/rfc/rfc4764.txt

11.05.2017 Certificate and Public Key Pinning - OWASP

If you don't have a pre-existing relationship, all is not lost. First, you can pin a host or server's certificate or public key the first
time you encounter it. If the bad guy was not active when you encountered the certificate or public key, he or she will not be
successful with future funny business.

Second, bad certificates are being spotted quicker in the field due to projects like Chromium (http://www.chromium.org) and
Certificate Patrol (https://addons.mozilla.org/en-us/firefox/addon/certificate-patrol/), and initiatives like the EFF's SSL
Observatory (https://www.eff.org/observatory).

Third, help is on its way, and there are a number of futures that will assist with the endeavors:

= Public Key Pinning (http://www.ietf.org/id/draft-ietf-websec-key-pinning-09.txt) — an extension to the HTTP protocol
allowing web host operators to instruct user agents (UAs) to remember ("pin") the hosts' cryptographic identities for a
given period of time.

= DNS-based Authentication of Named Entities (DANE) (https://datatracker.ietf.org/doc/rfc6698/) - uses Secure DNS to
associate Certificates with Domain Names For S/MIME, SMTP with TLS, DNSSEC and TLSA records.

= Sovereign Keys (http://www.eff.org/sovereign-keys) - operates by providing an optional and secure way of associating
domain names with public keys via DNSSEC. PKI (hierarchical) is still used. Semi-centralized with append only logging.

= Convergence (http://convergence.io) — different [geographical] views of a site and its associated data (certificates and
public keys). Web of Trust is used. Semi-centralized.

While Sovereign Keys and Convergence still require us to confer trust to outside parties, the parties involved do not serve share
holders or covet revenue streams. Their interests are industry transparency and user security.

More Information?

Pinning is an old new thing that has been shaken, stirred, and repackaged. While "pinning" and "pinsets" are relatively new
terms for old things, Jon Larimer and Kenny Root spent time on the subject at Google I/O 2012 with their talk Security and
Privacy in Android Apps (https://developers.google.com/events/io/sessions/gooio2012/107/).

Format Conversions

As a convenience to readers, the following with convert between PEM and DER format using OpenSSL.

[mmmmmmmm e m e e e e m e mm e e mmm = mm = mmm mm m mm m = m = m = = = m = = = = = = = = e = = = = = = = = = = = = =

Public key, X509
'$ openssl genrsa -out rsa-openssl.pem 3072 '
'$ openssl rsa -in rsa-openssl.pem -pubout -outform DER -out rsa-openssl.der

% Private key, PKCS#8
'$ openssl genrsa -out rsa-openssl.pem 3072 !
'$ openssl pkcs8 -nocrypt -in rsa-openssl.pem -inform PEM -topk8 -outform DER -out rsa-openssl.der

References

OWASP Injection Theory

OWASP Data Validation

OWASP Transport Layer Protection Cheat Sheet

IETF Public Key Pinning (http://www.ietf.org/id/draft-ietf-websec-key-pinning-09.txt)

IETF RFC 5054 (SRP) (http://www.ietf.org/rfc/rfc5054.txt)

IETF RFC 4764 (EAP-PSK) (http://www.ietf.org/rfc/rfc4764 txt)

IETF RFC 1421 (PEM Encoding) (http://www.ietf.org/rfc/rfc1421.txt)

IETF RFC 5280 (Internet X.509, PKIX) (http://www.ietf.org/rfc/rfc5280.txt)

IETF RFC 4648 (Base16, Base32, and Base64 Encodings) (http://www.ietf.org/rfc/rfc4648.txt)

IETF RFC 3279 (PKI, X509 Algorithms and CRL Profiles) (http://www.ietf.org/rfc/rfc3279.txt)

IETF RFC 4055 (PKI, X509 Additional Algorithms and CRL Profiles) (http://www.ietf.org/rfc/rfc4055.txt)
IETF RFC 2246 (TLS 1.0) (http://www.ietf.org/rfc/rfc2246.txt)

IETF RFEC 4346 (TLS 1.1) (http://www.ietf.org/rfc/rfc4346.txt)

IETF RFEC 5246 (TLS 1.2) (http://www.ietf.org/rfc/rfc5246.txt)

IETF RFEC 6698, Draft (DANE) (http://www.ietf.org/rfc/rfc6698 .txt)

EFF Sovereign Keys (http://www.eff.org/sovereign-keys)

Thoughtcrime Labs Convergence (http://convergence.io/)

RSA Laboratories PKCS#1, RSA Encryption Standard (http://www.rsa.com/rsalabs/node.asp?id=2125)
RSA Laboratories PKCS#6, Extended-Certificate Syntax Standard (http://www.rsa.com/rsalabs/node.asp?id=2128)
ITU Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER) (http://www.itu.int/rec/T-REC-X.690-200811-1/en)

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning 11/12

http://www.chromium.org/
https://addons.mozilla.org/en-us/firefox/addon/certificate-patrol/
https://www.eff.org/observatory
http://www.ietf.org/id/draft-ietf-websec-key-pinning-09.txt
https://datatracker.ietf.org/doc/rfc6698/
http://www.eff.org/sovereign-keys
http://convergence.io/
https://developers.google.com/events/io/sessions/gooio2012/107/
https://www.owasp.org/index.php/Injection_Theory
https://www.owasp.org/index.php/Data_Validation
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.ietf.org/id/draft-ietf-websec-key-pinning-09.txt
http://www.ietf.org/rfc/rfc5054.txt
http://www.ietf.org/rfc/rfc4764.txt
http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc3279.txt
http://www.ietf.org/rfc/rfc4055.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc6698.txt
http://www.eff.org/sovereign-keys
http://convergence.io/
http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.rsa.com/rsalabs/node.asp?id=2128
http://www.itu.int/rec/T-REC-X.690-200811-I/en

11.05.2017 Certificate and Public Key Pinning - OWASP

= TOR Project Detecting Certificate Authority Compromises and Web Browser Collusion
(https://blog.torproject.org/blog/detecting-certificate-authority-compromises-and-web-browser-collusion)

= Code Project Cryptographic Interoperability: Keys (http://www.codeproject.com/Articles/25487/Cryptographic-
Interoperability-Keys)

= Google I/O Security and Privacy in Android Apps (https://developers.google.com/events/io/sessions/go0i02012/107/)

= Trevor Perrin Transparency, Trust Agility, Pinning (Recent Developments in Server Authentication)
(https://crypto.stanford.edu/Real WorldCrypto/slides/perrin.pdf)

= Dr. Peter Gutmann's PKI is Broken (http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial .pdf)

= Dr. Matthew Green's The Internet is Broken (http://blog.cryptographyengineering.com/2012/02/how-to-fix-internet.html)

= Dr. Matthew Green's How do Interception Proxies fail? (http://blog.cryptographyengineering.com/2012/03/how-do-
interception-proxies-fail .html)

= Presentation: SSL Pinning implementation and bypasses for iOS and Android (http://www.slideshare.net/anantshri/ssl-
pinning-and-bypasses-android-and-ios)

Authors and Primary Editors

Jeffrey Walton - jeffrey, owasp.org
JohnSteven - john, owasp.org

Jim Manico - jim, owasp.org

Kevin Wall - kevin, owasp.org

Ricardo Iramar - ricardo.iramar, owasp.org

Retrieved from "https://www.owasp.org/index.php?title=Certificate_and_Public_Key_Pinning&oldid=218535"

Category: Control

= This page was last modified on 5 July 2016, at 02:00.
= Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning 12/12

https://blog.torproject.org/blog/detecting-certificate-authority-compromises-and-web-browser-collusion
http://www.codeproject.com/Articles/25487/Cryptographic-Interoperability-Keys
https://developers.google.com/events/io/sessions/gooio2012/107/
https://crypto.stanford.edu/RealWorldCrypto/slides/perrin.pdf
http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf
http://blog.cryptographyengineering.com/2012/02/how-to-fix-internet.html
http://blog.cryptographyengineering.com/2012/03/how-do-interception-proxies-fail.html
http://www.slideshare.net/anantshri/ssl-pinning-and-bypasses-android-and-ios
https://www.owasp.org/index.php?title=Certificate_and_Public_Key_Pinning&oldid=218535
https://www.owasp.org/index.php/Special:Categories
https://www.owasp.org/index.php/Category:Control
https://creativecommons.org/licenses/by-sa/4.0/

