19.04.2017 Merging vs. Rebasing - DZone Java

~.'DZone

Congratulations to the winners of the "Teach Us Tech Sprint" contest!

See the winners)»

Merging vs. Rebasing

by Tim Pettersen MVB - Apr. 11, 17 - Java Zone

Bitbucket is for the code that takes us to Mars, decodes the human genome, or drives your
next car. What will your code do? Get started with Bitbucket today, it's free.

The git rebase command has a reputation for being magical Git voodoo that beginners should stay
away from, but it can actually make life much easier for a development team when used with care. In
this article, we’ll compare git rebase with the related git merge command and identify all of the
potential opportunities to incorporate rebasing into the typical Git workflow.

Conceptual Overview

The first thing to understand about git rebase is that it solves the same problem as git merge . Both
of these commands are designed to integrate changes from one branch into another branch—they just
do it in very different ways.

Consider what happens when you start working on a new feature in a dedicated branch, then another
team member updates the master branch with new commits. This results in a forked history, which
should be familiar to anyone who has used Git as a collaboration tool.

Feature

\/

T 1 1 R | *a . B 1 o 1 r . 1 . 2 1 rm

https://dzone.com/articles/merging-vs-rebasing 113


https://dzone.com/java-jdk-development-tutorials-tools-news
https://dzone.com/users/249527/kannonboy.html
https://dzone.com/go?i=186132&u=https%3A%2F%2Fbitbucket.org%2Fproduct%3Futm_source%3Ddzone%26utm_medium%3Dpaid-content%26utm_content%3Dtext-code-that-takes-us-to-mars%26utm_campaign%3Dbitbucket_adexp-bbtofu_dzone-text
https://dzone.com/go?i=186132&u=https%3A%2F%2Fbitbucket.org%2Fproduct%3Futm_source%3Ddzone%26utm_medium%3Dpaid-content%26utm_content%3Dtext-code-that-takes-us-to-mars%26utm_campaign%3Dbitbucket_adexp-bbtofu_dzone-text
https://bitbucket.org/product?utm_source=dzone&utm_medium=paid-content&utm_content=merging-vs-rebasing&utm_campaign=bitbucket_adexp-bbtofu_dzone-syn-content
https://bitbucket.org/product?utm_source=dzone&utm_medium=paid-content&utm_content=merging-vs-rebasing&utm_campaign=bitbucket_adexp-bbtofu_dzone-syn-content
https://dzone.com/

19.04.2017 Merging vs. Rebasing - DZone Java
INOw, 1€t S Say tnat tne new COmINItS 111 master are reievant to e reature tnat you re working on. 10

incorporate the new commits into your feature branch, you have two options: merging or rebasing.

The Merge Option

The easiest option is to merge the master branch into the feature branch using something like the
following:

git checkout feature

git merge master

Or, you can condense this to a one-liner:

git merge master feature

This creates a new “merge commit” in the feature branch that ties together the histories of both
branches, giving you a branch structure that looks like this:

Feature

\4

o—o0—<o0-o0—
™

Master

¥ Merge Commit

Merging is nice because it’s a non-destructive operation. The existing branches are not changed in any
way. This avoids all of the potential pitfalls of rebasing (discussed below).

On the other hand, this also means that the feature branch will have an extraneous merge commit
every time you need to incorporate upstream changes. If master is very active, this can pollute your
feature branch’s history quite a bit. While it’s possible to mitigate this issue with advanced git log
options, it can make it hard for other developers to understand the history of the project.

https://dzone.com/articles/merging-vs-rebasing 2/13



19.04.2017 Merging vs. Rebasing - DZone Java

The Rebase Option

As an alternative to merging, you can rebase the feature branch onto master branch using the
following commands:

git checkout feature

git rebase master

This moves the entire feature branch to begin on the tip of the master branch, effectively
incorporating all of the new commits in master . But, instead of using a merge commit, rebasing re-
writesthe project history by creating brand new commits for each commit in the original branch.

Feature

\%

T

Master

# Brand New Commit

The major benefit of rebasing is that you get a much cleaner project history. First, it eliminates the
unnecessary merge commits required by git merge . Second, as you can see in the above diagram,
rebasing also results in a perfectly linear project history—you can follow the tip of feature all the way
to the beginning of the project without any forks. This makes it easier to navigate your project with
commands like git log, git bisect, and gitk.

But, there are two trade-offs for this pristine commit history: safety and traceability. If you don’t
follow the Golden Rule of Rebasing, re-writing project history can be potentially catastrophic for your
collaboration workflow. And, less importantly, rebasing loses the context provided by a merge commit
—you can’t see when upstream changes were incorporated into the feature.

Interactive Rebasing

Interactive rebasing gives you the opportunity to alter commits as they are moved to the new branch.
This is even more powerful than an automated rebase, since it offers complete control over the

https://dzone.com/articles/merging-vs-rebasing 3/13



19.04.2017 Merging vs. Rebasing - DZone Java

branch’s commit history. Typically, this is used to clean up a messy history before merging a feature
branch into master .

To begin an interactive rebasing session, pass the i option to the git rebase command:

git checkout feature

git rebase -i master

This will open a text editor listing all of the commits that are about to be moved:

pick 33d5b7a Message for commit #1
pick 9480b3d Message for commit #2
pick 5c67e61 Message for commit #3

This listing defines exactly what the branch will look like after the rebase is performed. By changing
the pick command and/or re-ordering the entries, you can make the branch’s history look like
whatever you want. For example, if the 2nd commit fixes a small problem in the 1st commit, you can
condense them into a single commit with the fixup command:

pick 33d5b7a Message for commit #1
fixup 9480b3d Message for commit #2
pick 5c67e61 Message for commit #3

When you save and close the file, Git will perform the rebase according to your instructions, resulting
in project history that looks like the following:

Contains the contents of

the 1st and 2nd commits Feature

\%

T

Master

https://dzone.com/articles/merging-vs-rebasing 4/13



19.04.2017 Merging vs. Rebasing - DZone Java

¥ Brand New Commit

Eliminating insignificant commits like this makes your feature’s history much easier to understand.
This is something that git merge simply cannot do.

The Golden Rule of Rebasing

Once you understand what rebasing is, the most important thing to learn is when not to do it. The
golden rule of git rebase is to never use it on public branches.

For example, think about what would happen if you rebased master onto your feature branch:

Feature Master

\% \%

™

Your
master
branch

Everybody else’s

master branch
Master

# Brand New Commit
The rebase moves all of the commits in master onto the tip of feature . The problem is that this only
happened in yourrepository. All of the other developers are still working with the original master .
Since rebasing results in brand new commits, Git will think that your master branch’s history has
diverged from everybody else’s.

The only way to synchronize the two master branches is to merge them back together, resulting in an
extra merge commitand two sets of commits that contain the same changes (the original ones, and the
ones from your rebased branch). Needless to say, this is a very confusing situation.

So, before you run git rebase , always ask yourself, “Is anyone else looking at this branch?” If the
answer is yes, take your hands off the keyboard and start thinking about a non-destructive way to
make your changes (e.g., the git revert command). Otherwise, you're safe to re-write history as

much as you like.

Force-Pushing

Tf van trv tao nich the rehaced mactar hranch hack ta a remate renncitarv it wall nrevent von fram
https://dzone.com/articles/merging-vs-rebasing 5/13



19.04.2017 Merging vs. Rebasing - DZone Java

Aa g UM vag LU plaraa Laav A VRSB U v wus AUATALAVAL ASIATAL LU M4 A VARAVU LY A VP UAMALUL 79 NSAL TTaLa JUa T Uaav g N te aa aaa

doing so because it conflicts with the remote master branch. But, you can force the push to go through
by passing the --force flag, like so:

# Be very careful with this command!

git push --force

This overwrites the remote master branch to match the rebased one from your repository and makes
things very confusing for the rest of your team. So, be very careful to use this command only when you
know exactly what you're doing.

One of the only times you should be force-pushing is when you’ve performed a local cleanup after
you’ve pushed a private feature branch to a remote repository (e.g., for backup purposes). This is like
saying, “Oops, I didn’t really want to push that original version of the feature branch. Take the current
one instead.” Again, it’s important that nobody is working off of the commits from the original version
of the feature branch.

Workflow Walkthrough

Rebasing can be incorporated into your existing Git workflow as much or as little as your team is
comfortable with. In this section, we’ll take a look at the benefits that rebasing can offer at the various
stages of a feature’s development.

The first step in any workflow that leverages git rebase is to create a dedicated branch for each
feature. This gives you the necessary branch structure to safely utilize rebasing:

Feature

N4

O—0 Oo—0

™

Master

Local Cleanup

One of the best ways to incorporate rebasing into your workflow is to clean up local, in-progress
features. By periodically performing an interactive rebase, you can make sure each commit in your

feature is focused and meanineful. This lets vou write vour code without worrving about breaking it un
https://dzone.com/articles/merging-vs-rebasing 6/13


https://bitbucket.org/product?utm_source=dzone&utm_medium=paid-content&utm_content=merging-vs-rebasing&utm_campaign=bitbucket_adexp-bbtofu_dzone-syn-content
https://bitbucket.org/product?utm_source=dzone&utm_medium=paid-content&utm_content=merging-vs-rebasing&utm_campaign=bitbucket_adexp-bbtofu_dzone-syn-content

19.04.2017 Merging vs. Rebasing - DZone Java

(8] v o v - - - v o - (8] L

into isolated commits—you can fix it up after the fact.

When calling git rebase , you have two options for the new base: The feature’s parent branch (e.g.,
master ), or an earlier commit in your feature. We saw an example of the first option in thelnteractive
Rebasing section. The latter option is nice when you only need to fix up the last few commits. For
example, the following command begins an interactive rebase of only the last 3 commits.

git checkout feature

git rebase -i HEAD~3

By specifying HEAD~3 as the new base, you're not actually moving the branch—you’re just interactively
re-writing the 3 commits that follow it. Note that this will not incorporate upstream changes into the
feature branch.

Rebase only these commits

Feature

\4

HEAD-3

O0—0 o—0

™

Master

3 Brand New Commit
If you want to re-write the entire feature using this method, the git merge-base command can be
useful to find the original base of the feature branch. The following returns the commit ID of the
original base, which you can then pass to git rebase :

git merge-base feature master

This use of interactive rebasing is a great way to introduce git rebase into your workflow, as it only
affects local branches. The only thing other developers will see is your finished product, which should

https://dzone.com/articles/merging-vs-rebasing 7/13



19.04.2017 Merging vs. Rebasing - DZone Java
be a clean, easy-to-follow feature branch history.

But again, this only works for private feature branches. If you’re collaborating with other developers
via the same feature branch, that branch is public, and you're not allowed to re-write its history.

There is no git merge alternative for cleaning up local commits with an interactive rebase.

Incorporating Upstream Changes Into a Feature

In the Conceptual Overview section, we saw how a feature branch can incorporate upstream changes
from master using either git merge or git rebase . Merging is a safe option that preserves the entire
history of your repository, while rebasing creates a linear history by moving your feature branch onto
the tip of master.

This use of git rebase is similar to a local cleanup (and can be performed simultaneously), but in the
process it incorporates those upstream commits from master .

Keep in mind that it’s perfectly legal to rebase onto a remote branch instead of master . This can
happen when collaborating on the same feature with another developer and you need to incorporate
their changes into your repository.

For example, if you and another developer named John added commits to the feature branch, your
repository might look like the following after fetching the remote feature branch from John’s
repository:

Feature

¢
O—0O o0
0

John / Feature

You can resolve this fork the exact same way as you integrate upstream changes from master : either
merge your local feature with john/feature, or rebase your local feature onto the tip of john/feature.

Merging
https://dzone.com/articles/merging-vs-rebasing 8/13



19.04.2017 Merging vs. Rebasing - DZone Java

¢
O ®

O—0O o0

0

¥ Merge Commit

Rebasing

¥ Brand New Commits

Nnte that thic rehace dnean’t vinlate the (?nldon Riile nf Rohacinahecance nnlv vanr laecal faatiira
https://dzone.com/articles/merging-vs-rebasing 9/13



19.04.2017 Merging vs. Rebasing - DZone Java

ATULL LIAGL LI A UMDY WU UL TV AUVAULL LU U UL AL HMEL U AU U MU LY UV L VAL ) U ML AU VL LUt U o

commits are being moved—everything before that is untouched. This is like saying, “add my changes
to what John has already done.” In most circumstances, this is more intuitive than synchronizing with
the remote branch via a merge commit.

By default, the git pull command performs a merge, but you can force it to integrate the remote
branch with a rebase by passing it the --rebase option.

Reviewing a Feature With a Pull Request

If you use pull requests as part of your code review process, you need to avoid using git rebase after
creating the pull request. As soon as you make the pull request, other developers will be looking at
your commits, which means that it’s a public branch. Re-writing its history will make it impossible for
Git and your teammates to track any follow-up commits added to the feature.

Any changes from other developers need to be incorporated with git merge instead of git rebase.

For this reason, it’s usually a good idea to clean up your code with an interactive rebase before
submitting your pull request.

Integrating an Approved Feature

After a feature has been approved by your team, you have the option of rebasing the feature onto the
tip of the master branch before using git merge to integrate the feature into the main code base.

This is a similar situation to incorporating upstream changes into a feature branch, but since you're
not allowed to re-write commits in the master branch, you have to eventually use git merge to
integrate the feature. However, by performing a rebase before the merge, you're assured that the
merge will be fast-forwarded, resulting in a perfectly linear history. This also gives you the chance to
squash any follow-up commits added during a pull request.

Initial State
Feature
Master

https://dzone.com/articles/merging-vs-rebasing 10/13



19.04.2017

Merging vs. Rebasing - DZone Java

| I—

Rebase and Merge

¥ Brand New Commits

Merge without rebasing

O—0

https://dzone.com/articles/merging-vs-rebasing

Master

Oo—0

11/13



19.04.2017 Merging vs. Rebasing - DZone Java

Master

¥ Merge Commit
If you're not entirely comfortable with git rebase , you can always perform the rebase in a temporary
branch. That way, if you accidentally mess up your feature’s history, you can check out the original
branch and try again. For example:

git checkout feature

git checkout -b temporary-branch
git rebase -i master

# [Clean up the history]

git checkout master

git merge temporary-branch

Summary

And that’s all you really need to know to start rebasing your branches. If you would prefer a clean,
linear history free of unnecessary merge commits, you should reach for git rebase instead of git
merge when integrating changes from another branch.

On the other hand, if you want to preserve the complete history of your project and avoid the risk of
re-writing public commits, you can stick with git merge . Either option is perfectly valid, but at least
now you have the option of leveraging the benefits of git rebase .

Bitbucket is the Git solution for professional teams who code with a purpose, not just as a
hobby. Get started today, it's free.

Like This Article? Read More From DZone

Titanium Armor: Recovering From I ' The 2016 Git Retrospective:
Various Disasters Rebase

Free DZone Refcard
Contexts and Dependency
Injection for the Java EE Platform

Extending Git

Topics: JAVA , GIT , MERGING , REBASING , TUTORIAL

Published at DZone with permission of Tim Pettersen, DZone MVB. See the original article here.
Opinions expressed by DZone contributors are their own.

https://dzone.com/articles/merging-vs-rebasing 12/13


https://dzone.com/go?i=186133&u=https%3A%2F%2Fbitbucket.org%2Fproduct%3Futm_source%3Ddzone%26utm_medium%3Dpaid-content%26utm_content%3Dtext-teams-who-code-with-a-purpose%26utm_campaign%3Dbitbucket_adexp-bbtofu_dzone-text
https://dzone.com/go?i=186133&u=https%3A%2F%2Fbitbucket.org%2Fproduct%3Futm_source%3Ddzone%26utm_medium%3Dpaid-content%26utm_content%3Dtext-teams-who-code-with-a-purpose%26utm_campaign%3Dbitbucket_adexp-bbtofu_dzone-text
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://dzone.com/articles/titanium-armor-recovering-from-various-disasters?fromrel=true
https://dzone.com/articles/titanium-armor-recovering-from-various-disasters?fromrel=true
https://dzone.com/articles/the-2016-git-retrospective-rebase?fromrel=true
https://dzone.com/articles/the-2016-git-retrospective-rebase?fromrel=true
https://dzone.com/articles/extending-git?fromrel=true
https://dzone.com/articles/extending-git?fromrel=true
https://dzone.com/refcardz/contexts-and-depencency?fromrel=true
https://dzone.com/refcardz/contexts-and-depencency?fromrel=true

19.04.2017 Merging vs. Rebasing - DZone Java

https://dzone.com/articles/merging-vs-rebasing 13/13



