
en
br
Ru

Search

IB Surgeon
Home
Contacts
Customers
Services

Firebird/Interbase Recovery
Database performance optimization
Optimized Firebird configurations
Firebird database migration

Purchase
Products

HQbird: Advanced Firebird SQL
IBSurgeon FirstAID 4.0
IBUndelete 2.6
Upgrades
Previous versions

IBSurgeon ISV Subscription
IBSurgeon Recovery Pack
FBScanner
IBAnalyst
FBDataGuard
FBMonLogger
IBTM Transaction Monitor
IBBackupSurgeon
IBSurgeon Free Tools

Articles
Tests

Firebird 2.5 Performance Logs
Firebird 3.0 Performance Logs
Firebird 4.0 Performance Logs

Documentation
Firebird Training

Articles
Home1.
Articles2.
45 Ways To Speed Up Firebird Database3.

Advanced FirebirdSQL distribution HQbird, recovery and optimization... https://ib-aid.com/en/articles/45-ways-to-speed-up-firebird-database/

Стр. 1 из 8 22.05.2016 18:34

45 Ways To Speed Up Firebird Database
Here you can find the list of performance tips for Firebird database in different areas -
from hardware/OS and Firebird configuration tuning to SQL optimization
recommendations. This list is not the complete reference how to optimize Firebird, and it
assumes that you understand basics of Firebird functioning, such as execution plans,
transactions management, and queries performance statistics.

Please apply these tips with caution and verify their effect before putting to the production.
Our company (IBSurgeon) offers the comprehensive database performance optimization service and
Firebird training through Skype.

1. Put database to SSD
Put your database on SSD. SSD drive provides much better random IO than traditional drives. Random IO
is critical for reading and writing data distributed through big database file - the majority of database
operations require intensive parallel random IO.
2. Use RAID 10
If you use RAID1 or RAID5, consider RAID10 – it is 15-25% faster.
3. Check BBU
If you are using RAID controller, check that it has Backup Battery Unit (BBU) installed and operational –
some vendors do not provide BBU by default. Without BBU, the controller disables the cache, and RAID
works very slow, even slower than usual SATA drives. Usually, you can check BBU status in the RAID
configuration tool.
4. Set write cache to write-back
If you are using RAID controller with installed BBU (and server with UPS), check that its cache is set to
write-back (not write-through). «Write-back» enables write cache of the controller.
5. Enable read cache
If you use RAID controller, check that it has enabled read cache.
6. Check disk subsystem
Check your drives for bad blocks and other hardware problems (including overheating). Hardware
problems can significantly decrease IO performance and lead to database corruptions.
7. Use SuperClassic or Classic in Firebird 2.5
If you use Firebird 2.5 SuperServer with many connections, try to use SuperClassic or Classic, they can
scale better by using all cores of CPU.
8. Use SuperServer 3.0 in Firebird 3.

Advanced FirebirdSQL distribution HQbird, recovery and optimization... https://ib-aid.com/en/articles/45-ways-to-speed-up-firebird-database/

Стр. 2 из 8 22.05.2016 18:34

If you use Classic or SuperClassic in 2.5, consider migration to Firebird 3.0 SuperServer, now it can use
multiple cores and combine it with the advantages of the shared cache.
9. Increase page buffers cache
Increase the size of page buffers cache (parameter DefaultDBCachePages) from the default values. For 2.5
SuperServer we recommend 10000 pages, for 3.0 SuperServer – 50000 pages, for Classic and
SuperClassic – from 256 to 2048 pages. However, don't set page buffers cache value too high – cache
synchronization has its cost, and the idea to put all database into RAM by tuning this value will not work.
Use pre-optimized Firebird configuration files here: http://ib-aid.com/en/optimized-firebird-configuration/
10. Increase memory size for sort operations
Increase the value of TempCacheLimit parameter in firebird.conf – it specifies the size of the cache of the
temporary space for sorting. Default values are too low (8Mb for Classic and 64Mb for SuperServer), use
at least 64Mb for Classic and 1Gb for SuperServer and SuperClassic. Again, use optimized configuration
files from #9.
11. Set Forced Writes Off (with caution!)
If you have intensive insert or update activity (you can check it with HQbird MonLogger, for details see
page 60 of HQbird User Guide), and if you have UPS and replication installed to protect from hardware
failures, consider to set Forced Writes settings to OFF, it can increase speed of write operations up to 3
times.
12. Increase number of hash slots for Classic/SuperClassic
Increase the value of LockHashSlots parameter for Classic and SuperClassic from the default 1009 to
some big prime number (30011, for example), it will decrease queues in the internal locking mechanism.
13. Use CPU Affinity for Super Server 2.5
If you use SuperServer 2.5, set CPUAffinity parameter to the value equal to the number of databases in
use: SuperServer in 2.5 can use different CPU cores to process requests for the certain databases.
14. Use fast drive for temp space
Set the first part of TempDirectory parameter in firebird.conf to the fast disk – SSD or RAM drive. It will
decrease the time of big sortings – for example when the database is being restored.
15. Store database backups on another drive
Store database backups on the dedicated physical drive (RAID). It will separate read and write IO during
backup, and increase backup speed and decrease load for the main drive. It is especially important when
backups are taken while users are working with the database. More details about hardware configuration
for Firebird can be found in "Firebird Hardware Guide".
16. Deactivate indices for bulk inserts
If you insert or update many records (more than 25% of the table), deactivate indices for the table where
records are inserted and reactivate them after insert or update. The index rebuild operation can be faster

Advanced FirebirdSQL distribution HQbird, recovery and optimization... https://ib-aid.com/en/articles/45-ways-to-speed-up-firebird-database/

Стр. 3 из 8 22.05.2016 18:34

than many updates of the index.
17. Use Global Temporary Tables for fast inserts
To speed up inserts and updates, use Global Temporary Tables for bulk inserts of the large recordsets, and
then transfer records into the permanent table. It can be very effective to insert records to GTT,
pre-process them and then move to the persistent table.
18. Avoid unnecessary indices
Use fewer indices for tables with intensive inserts and updates. Each index adds significant overhead for
insert, update, delete, and garbage collection operations – there could be 3-4 additional page reads and
writes when the single record is being inserted/updated/deleted/cleaned for each index.
19. Replace UDFs with embedded functions calls
Replace UDF calls with embedded functions calls. Many embedded functions were added in the recent
versions of Firebird, which offer functionality previously available only in UDF libraries. Replace such
functions where possible, since embedded functions work up to 3 times faster than UDFs.
20. Use read-only transactions for read operations
Use read-only transactions for operations which do not change record (i.e., SELECTs) with isolation mode
= read committed. Such transactions do not retain record versions from the garbage collection, and can run
indefinitely: they do not affect database performance.
21. Use short write transactions and get rid of ALL long-running
Use short writeable transactions (for operations INSERT/UPDATE/DELETE).
The shorter writeable transaction is, the better. The short transactions retain proportionally less number of
record versions from garbage collection than long-running. Unfortunately, even the single long-running
transaction (from the development tool left open, for example) can screw the good effect of all other short
writeable transaction. That's why you need to monitor long-running transaction and fix the appropriate
places in the source code. Use HQbird DataGuard tool to receive alerts about the oldest active transaction
in Firebird database (what applications started it, what IP address, the timestamp of its start), and HQbird
MonLogger tool to see the complete list of the long-running active transactions and their IO statistics.
Also, if you are using database access components/libraries which can cache record sets, use cached
updates.
22. Avoid long record chains
Avoid situations when one record has many record versions – Firebird works much slower with long
record chains. (to see how many record versions some tables has, and what is the longest record chain you
can use HQbird IBAnalyst tool, tab Tables, sort on "Max Version"). Use the combination of inserts and
scheduled delete of old records instead of multiple updates of the same record.
23. Use PREPARE correctly
Use prepared statements to run SQL queries where only parameters are changed – for example, make
prepare before the loop of such queries. Prepare can take significant time (especially for big tables), and
preparing the query only once will greatly increase the overall performance.

Advanced FirebirdSQL distribution HQbird, recovery and optimization... https://ib-aid.com/en/articles/45-ways-to-speed-up-firebird-database/

Стр. 4 из 8 22.05.2016 18:34

24. Don't COMMIT too often during bulk insert/update operation
In the case of bulk INSERT/UPDATE/DELETE operation, don't commit the transaction after each change
(it can happen if you are using auto commit option in your database driver) - commit transactions at least
after 1000 operations or more. Each transaction commit runs several read/write IO operations against the
database, that's why often commits decrease database performance.
25. "Turn off" indices if you are using IN with many constants
If you are using construction WHERE fieldX IN (Constant1, Constant2,… ConstantN), and there is an
index on fieldX, Firebird will use an index as many times as many constants are in the IN list. Disable
index search by turning fieldX into expression +0: WHERE fieldX+0 IN (Constant1, Constant2,…
ConstantN), or, for strings, use fieldX||''
26. Replace IN with JOIN
Avoid using queries with nested WHERE IN(SELECT... WHERE IN (SELECT.. WHERE IN())), it can
confuse Firebird optimizer. Transform nested INs into joins.
27. Use LEFT JOIN in the correct way
If you are using LEFT OUTER joins, explicitly put tables in the join from the smallest one to the largest
one.
28. Limit fetch of SELECT queries
Always try to limit the large output for SELECT queries with FIRST… SKIP or ROWS clauses. If the
query is not designed specifically as a report (which requires all records to be printed/exported), usually it
is enough to show top 10-100 records. Fetch only necessary records.
29. Specify less number of columns in SELECT with ORDER BY/GROUP BY
Reduce the number of columns and their summary width in queries with ORDER BY/GROUP BY both in
SELECT part (i.e., fields to be shown) and in the ORDER BY clause. Firebird merges columns from
SELECT and ORDER BY/GROUP BY clauses and sorts them in memory (or, if memory is not enough,
on the disk). So, if there is a long VARCHAR in SELECT, the size of the sort files can be really large
(many gigabytes). Reducing the number of fields only for those which must be sorted and late join with
big fields to be shown can greatly (x3-x10) increase speed of a query with ORDER BY/GROUP BY.
30. Use derived tables to optimize SELECT with ORDER BY/GROUP BY
Another way to optimize SQL query with sorting is to use derived tables to avoid unnecessary sort
operations. Instead of
SELECT FIELD_KEY, FIELD1, FIELD2, ... FIELD_N
FROM T
ORDER BY FIELD2
use the following modification:
SELECT T.FIELD_KEY, T.FIELD1, T.FIELD2, ... T.FIELD_N
FROM (SELECT FIELD_KEY FROM T ORDER BY FIELD2) T2
JOIN T ON T.FIELD_KEY = T2.FIELD_KEY

Advanced FirebirdSQL distribution HQbird, recovery and optimization... https://ib-aid.com/en/articles/45-ways-to-speed-up-firebird-database/

Стр. 5 из 8 22.05.2016 18:34

31. Store short strings in VARCHAR, large in BLOBs
To store short character data, use VARCHARs, to store long texts, use BLOBs. Varchars are faster for the
small pieces of data because they are stored in the record, and the whole record is read during the same IO
cycle, and if record size is less than 2/3 of the database page size, the whole record is stored on the same
database page. BLOBs are stored outside of the record, and require the additional round of IO to read it,
and they show the advantage with reading and writing long strings.
32. Exclude BLOB columns from the large SELECTs
Exclude BLOB columns from the large SELECTs. Use a kind of late binding with sub-selects to
selectively show information from BLOBs (for example, show the content of the document).
33. Use BIGINT for primary and unique keys
Use BIGINT type for auto-incremented primary and unique keys and for identifiers of all types.
Operations with BIGINT are the fastest, and BIGINT has enough capacity to store almost all data ranges.
34. Don't use VARCHARs for keys
Don't use VARCHAR for identifiers unless it is really necessary – operations with them are far less
effective than with integer columns. Especially avoid GUIDs, as identifies – due to the random
distribution of GUID values INSERT/UPDATE operations with Primary/Unique Keys GUIDs can be 20
times slower than with integers.
35. Recalculate indices statistics
Recalculate indices statistics regularly. Update indices statistics for the tables with frequent or massive
changes with command SET STATISTICS, it allows Firebird optimizer to choose better SQL plans.
HQbird Firebird DataGuard can perform such recalculation of indices statistics automatically according to
the desired schedule (usually once a week).
36. Use connection pool
If database connections to Firebird database are short (it's typical for websites), use connection pool – for
example, in PHP use function ibase_pconnect instead of ibase_connect
37. Use LINGER option in Firebird 3.0
If database connections are short and you are using Firebird 3+, use LINGER option to keep cache active
during the specified amount of time, it will keep frequently used pages in the cache even if there will be no
other connections. For example, ALTER DATABASE SET LINGER TO 60 will keep the cache for 60
seconds after the end of the last connection.
38. Use HASH JOINs
In Firebird 3.0, in case the of joining big and small tables, HASH JOIN could be much faster than normal
join which uses «nested loop» with index. To make Firebird optimizer to use HASH join, use +0 in the
join condition: T1 JOIN T2 ON T1.FIELD1+0 = T2.FIELD2+0. Check the result of the optimization
before putting it to the production!

Advanced FirebirdSQL distribution HQbird, recovery and optimization... https://ib-aid.com/en/articles/45-ways-to-speed-up-firebird-database/

Стр. 6 из 8 22.05.2016 18:34

39. Mark appropriate PSQL functions as DETERMINISTIC
Mark your PSQL functions (in Firebird 3+) which do not have parameters and return constant values with
keyword DETERMINISTIC. The deterministic functions are calculated and cached in the scope of the
current query.
40. Use analytical (window) functions in Firebird 3.0
If you are running SELECT with simultaneous output of some column and aggregated function for it, use
window (analytical) functions – it is faster than the subquery or 2 queries. For example:
Select id, department, salary, salary / (select sum(salary) from employee) percentage
from employee
replace with
Select id, department, salary, salary / sum(salary) OVER () percentage from employee

41. Use switch -se for gbak
Use switch –se to increase gbak backup and/or restore speed up to 20%, for example
gbak -b -g -se service_mgr c:\db\data.fdb e:\backup\data.fbk

42. WHERE CURRENT OF
The fastest way to process records fetched by the cursor in PSQL is the clause ‘where current of <>’. It
is faster than ‘where rb$db_key = :v_db_key’ and much faster than search with a primary or unique
key.
43. Avoid often queries to monitoring tables
Don't run queries to Firebird monitoring tables (MON$) too often – such queries consume significant
resources and can greatly decrease the performance of the main business logic. We recommend running
MON$ queries not often than once per minute. For continuous monitoring of Firebird queries/transactions
/attachments, use HQbird PerfMon tool which supports Trace API (see page 66 of HQbird User Guide for
details) .
44. Use NO_AUTO_UNDO option for bulk inserts/updates
If you are running many DML (Update/Insert/Delete) commands in the frames of the same transaction,
Firebird merges undo-log of each command with undo-log of the transaction. To speed up bulk DML
operations start the transaction with «NO AUTO UNDO» option, in order to do not merge undo-logs of
each command with the transaction's undo-log.
45. Do not use SRP authentication in Firebird 3 if you don't need it
Does not use SRP users authentication (Firebird 3.0+) if you don't really need it – connect with SRP
authentication is established slower than the regular connection.
Instead of summary
The biggest impact to the Firebird performance is caused by your own SQL queries. Learn how to read

Advanced FirebirdSQL distribution HQbird, recovery and optimization... https://ib-aid.com/en/articles/45-ways-to-speed-up-firebird-database/

Стр. 7 из 8 22.05.2016 18:34

and analyze query plans, this is a key for the queries performance. You can get an online course about
queries optimization in IBSurgeon http://ib-aid.com/firebird-training

Contact us
Do you have any questions? Don't hesitate to contact us by email!
In order to receive notification about next 55 ways to improve Firebird performance, subscribe to
IBSurgeon news:

© 2002 - 2016 IBSurgeon, Ltd. All rights reserved.

238

Advanced FirebirdSQL distribution HQbird, recovery and optimization... https://ib-aid.com/en/articles/45-ways-to-speed-up-firebird-database/

Стр. 8 из 8 22.05.2016 18:34

