
support@viva64.com Contact Us
Русский English
Collected Errors:
9574
Checked Projects:
245
42 tips on C++:
Read
PVS-Studio
Static Code Analyzer for C, C++ and C#

Product page
Documentation
Troubleshooting FAQ

Download and try Buy
Blog:

19.05.2016
Introduction to Roslyn and its use in program development

Roslyn is a platform which provides the developer with powerful tools to parse and analyze code.
It's not enough just ...
Read more
18.05.2016
Showing abilities of PVS-Studio analyzer by examples of Microsoft open-source projects

Microsoft gradually started to open the code of some projects. Our team is very happy about this.
We support the ...
Read more
11.05.2016
Analyzing Firebird 3.0

A new version of Firebird DBMS was released not so long ago. This release was one of the most
significant ...
Read more

Featured:
11.04.2016
An always up-to-date list of articles describing errors that we find in open source projects with PVS-Studio

Analyzing Firebird 3.0 http://www.viva64.com/en/b/0396/

Стр. 1 из 15 22.05.2016 19:18

analyzer

It contains articles describing the errors that were discovered by analyzing different open-source
projects.
Read more
05.01.2015
Readers' FAQ on Articles about PVS-Studio, 2015

In the comments to our articles, readers would often ask the same questions. We decided to make a
FAQ to ...
Read more
12.03.2014
How we compared code analyzers: CppCat, Cppcheck, PVS-Studio, and Visual Studio

We have carried out a thorough comparison of four analyzers for C/C++ code: CppCat, Cppcheck,
PVS-Studio, and Visual Studio's built-in ...
Read more

Follow our CTO:

Analyzing Firebird 3.0 http://www.viva64.com/en/b/0396/

Стр. 2 из 15 22.05.2016 19:18

Tweets by @Code_Analysis

20 May

 Andrey Karpov Retweeted

I strongly prefer my own IDL with my own IDL compiler and my own (bit-oriented) encoding!
ow.ly/glzG300fQNe

'No Bugs' Hare
@NoBugsHare

Andrey Karpov
@Code_Analysis

Home
Blog
Analyzing Firebird 3.0

Analyzing Firebird 3.0
11.05.2016 Pavel Belikov

Introduction
Typos
Unsafe use of memcmp
Extra checks
Unsafe comparison of an unsigned variable
Null pointer dereferencing
Testing for nullptr after new
Unsafe use of realloc
Unused enum values in switch
Buffer overflow
Shifting negative numbers

Analyzing Firebird 3.0 http://www.viva64.com/en/b/0396/

Стр. 3 из 15 22.05.2016 19:18

Variable redefinition
Conclusion

A new version of Firebird DBMS was released not so long ago. This release was one of the most
significant in the project's history, as it marked substantial revision of the architecture, addition of
multithreading support, and performance improvements. Such a significant update was a good occasion
for us to scan Firebird one more time with PVS-Studio static code analyzer.

Introduction
Firebird is a cross-platform open-source database management system written in C++ that runs on
Microsoft Windows, Linux, Mac OS X, and many Unix-like operating systems. It can be used and
distributed for free. To learn more about Firebird, welcome to the official site.
We have already scanned Firebird with our analyzer before. The previous report can be found in the article
"A Spin-off: Firebird Checked by PVS-Studio". For this analysis, we took the project code from GitHub,
the master branch. The building process is described in detail in the article at the project website. We
analyzed the source files in PVS-Studio Standalone, version 6.03, using the Compiler Monitoring
mechanism, which allows you to scan projects without integrating the tool into the build system. The log
file generated by the analyzer can be viewed both in the Standalone version and in Visual Studio.

Typos
void advance_to_start()
{
....
if (!isalpha(c) && c != '_' && c != '.' && c != '_')

 syntax_error(lineno, line, cptr);
....

}
PVS-Studio diagnostic message: V501 There are identical sub-expressions 'c != '_'' to the left and to the
right of the '&&' operator. reader.c 1203
The analyzer detected a logical expression with two identical subexpressions c != '_'. The last condition

Analyzing Firebird 3.0 http://www.viva64.com/en/b/0396/

Стр. 4 из 15 22.05.2016 19:18

contains a typo and should actually compare the c variable with some other character. In other functions
nearby, the variable is tested for the '$' character, so it should probably be used in our example as well:
if (!isalpha(c) && c != '_' && c != '.' && c != '$')
Another mistake resulting from the programmer's inattention:
int put_message(....)
{
if (newlen <= MAX_UCHAR)
{

 put(tdgbl, attribute);
 put(tdgbl, (UCHAR) newlen);
}
else if (newlen <= MAX_USHORT)
{
if (!attribute2)

 BURP_error(314, "");
....

}
else

 BURP_error(315, "");
....

}
PVS-Studio diagnostic messages:

V601 The string literal is implicitly cast to the bool type. Inspect the second argument. backup.cpp
6113
V601 The string literal is implicitly cast to the bool type. Inspect the second argument. backup.cpp
6120

Here we deal with a wrong call to the BURP_error function. This is how the function is declared:
void BURP_error(USHORT errcode, bool abort,

const MsgFormat::SafeArg& arg = MsgFormat::SafeArg());
void BURP_error(USHORT errcode, bool abort, const char* str);
The second argument is a boolean value and the third one is a string. In our example, however, the string
literal is passed as the second argument and is, therefore, cast to true. The function call should be rewritten
in the following way: BURP_error(315, true, "") or BURP_error(315, false, "").
However, there are cases when only the project authors can tell if there is an error or not.
void IDX_create_index(....)
{
....

 index_fast_load ifl_data;
....
if (!ifl_data.ifl_duplicates)

 scb->sort(tdbb);
if (!ifl_data.ifl_duplicates)

 BTR_create(tdbb, creation, selectivity);
....

}
PVS-Studio diagnostic message: V581 The conditional expressions of the 'if' operators situated alongside
each other are identical. Check lines: 506, 509. idx.cpp 509

Analyzing Firebird 3.0 http://www.viva64.com/en/b/0396/

Стр. 5 из 15 22.05.2016 19:18

This example deals with two blocks of code that check the same condition in succession. There might be a
typo in one of them, or this issue has to do with copying or deleting some code fragments. In any case, this
code looks strange.
In the next example we'll discuss an issue that deals with pointers.
static void string_to_datetime(....)
{
....
const char* p = NULL;
const char* const end = p + length;
....
while (p < end)
{
if (*p != ' ' && *p != '\t' && p != 0)
{

 CVT_conversion_error(desc, err);
return;

}
++p;

}
....

}
PVS-Studio diagnostic message: V713 The pointer p was utilized in the logical expression before it was
verified against nullptr in the same logical expression. cvt.cpp 702
In the condition, the p variable is compared with nullptr right after dereferencing. It may indicate that
some other condition should have been used instead of this check, or that this check is just not necessary.
Earlier in the code, a similar fragment can be found:
while (++p < end)
{
if (*p != ' ' && *p != '\t' && *p != 0)

 CVT_conversion_error(desc, err);
}
To avoid errors like this, use appropriate literals when comparing with zero: '\0' for type char, 0 for
numbers, and nullptr for pointers. Sticking to this rule will help you avoid lots of silly errors like that.

Unsafe use of memcmp
SSHORT TextType::compare(ULONG len1, const UCHAR* str1,
 ULONG len2, const UCHAR* str2)
{
....

 SSHORT cmp = memcmp(str1, str2, MIN(len1, len2));
if (cmp == 0)

 cmp = (len1 < len2 ? -1 : (len1 > len2 ? 1 : 0));
return cmp;

}
PVS-Studio diagnostic message: V642 Saving the 'memcmp' function result inside the 'short' type variable

Analyzing Firebird 3.0 http://www.viva64.com/en/b/0396/

Стр. 6 из 15 22.05.2016 19:18

is inappropriate. The significant bits could be lost breaking the program's logic. texttype.cpp 3
The memcmp function returns the following values:

< 0 if str1 is less than str2
0 if str1 equals str2
> 0 if str1 is greater than str2

The function does not guarantee to return exact values when the strings are not equal, so storing the result
in a variable of size less than that of type int may lead to losing the most significant bits and distorting the
execution logic.

Extra checks
void Trigger::compile(thread_db* tdbb)
{
 SET_TDBB(tdbb);
Database* dbb = tdbb->getDatabase();
Jrd::Attachment* const att = tdbb->getAttachment();
if (extTrigger)
return;

if (!statement /*&& !compile_in_progress*/)
{
if (statement)
return;

....
}

}
PVS-Studio diagnostic message: V637 Two opposite conditions were encountered. The second condition
is always false. Check lines: 778, 780. jrd.cpp 778
The analyzer detected checks of two opposite conditions. The second condition seems to be no longer
necessary since the first one was changed at some point in the past, so it can be deleted, although it is
completely up to the author to make this decision.
The following code fragment is another example of strange branching.
static void asgn_from(ref* reference, int column)
{
 TEXT variable[MAX_REF_SIZE];
 TEXT temp[MAX_REF_SIZE];
for (; reference; reference = reference->ref_next)
{
const gpre_fld* field = reference->ref_field;
....
if (!field || field->fld_dtype == dtype_text)
....

else if (!field || field->fld_dtype == dtype_cstring)
....

else
....

}
}

Analyzing Firebird 3.0 http://www.viva64.com/en/b/0396/

Стр. 7 из 15 22.05.2016 19:18

PVS-Studio diagnostic message: V560 A part of conditional expression is always false: !field. int_cxx.cpp
217
If the field pointer is non-null, the code will never reach the condition in the else if branch. Either this
check is redundant or there should be some other comparison instead of it. It's not clear, whether this
condition contradicts the execution logic.
In addition to these examples, a number of redundant checks were found in logical expressions.
bool XnetServerEndPoint::server_init(USHORT flag)
{
....

 xnet_connect_mutex = CreateMutex(ISC_get_security_desc(),
 FALSE, name_buffer);
if (!xnet_connect_mutex ||

(xnet_connect_mutex && ERRNO == ERROR_ALREADY_EXISTS))
{

 system_error::raise(ERR_STR("CreateMutex"));
}
....

}
PVS-Studio diagnostic message: V728 An excessive check can be simplified. The '||' operator is
surrounded by opposite expressions '!xnet_connect_mutex' and 'xnet_connect_mutex'. xnet.cpp 2231
The check if (!xnet_connect_mutex || (xnet_connect_mutex && ERRNO ==
ERROR_ALREADY_EXISTS)) can be simplified to if (!xnet_connect_mutex || ERRNO ==
ERROR_ALREADY_EXISTS). The correctness of such transformation can be easily proved with the
truth table.

Unsafe comparison of an unsigned variable
static bool write_page(thread_db* tdbb, BufferDesc* bdb,)
{
....
if (bdb->bdb_page.getPageNum() >= 0)
....

}
PVS-Studio diagnostic message: V547 Expression 'bdb->bdb_page.getPageNum() >= 0' is always true.
Unsigned type value is always >= 0. cch.cpp 4827
The bdb->bdb_page.getPageNum() >= 0 condition will always be true, as the function returns an unsigned
value. This error probably has to do with an incorrect check of the value. Based on other similar
comparisons in the project, I think the code should actually look like this:
if (bdb->bdb_page.getPageNum() != 0)

Null pointer dereferencing
static bool initializeFastMutex(FAST_MUTEX* lpMutex,
 LPSECURITY_ATTRIBUTES lpAttributes, BOOL bInitialState,
 LPCSTR lpName)
{
if (pid == 0)

 pid = GetCurrentProcessId();

Analyzing Firebird 3.0 http://www.viva64.com/en/b/0396/

Стр. 8 из 15 22.05.2016 19:18

 LPCSTR name = lpName;
if (strlen(lpName) + strlen(FAST_MUTEX_EVT_NAME) - 2

>= MAXPATHLEN)
{
SetLastError(ERROR_FILENAME_EXCED_RANGE);
return false;

}
 setupMutex(lpMutex);
char sz[MAXPATHLEN];
if (lpName)
....

}
PVS-Studio diagnostic message: V595 The 'lpName' pointer was utilized before it was verified against
nullptr. Check lines: 2814, 2824. isc_sync.cpp 2814
Warning V595 is the most common among the projects scanned by PVS-Studio, and Firebird is no
exception. In total, the analyzer found 30 issues triggering this diagnostic.
In this example, the call strlen(lpName) precedes a pointer check for nullptr, thus leading to undefined
behavior when trying to pass a null pointer to the function. The pointer-dereferencing operation is hidden
inside the call to strlen, which makes it difficult to find the error without a static analyzer.

Testing for nullptr after new
rem_port* XnetServerEndPoint::get_server_port(....)
{
....

 XCC xcc = FB_NEW struct xcc(this);
try {
....

}
catch (const Exception&)
{
if (port)

 cleanup_port(port);
else if (xcc)

 cleanup_comm(xcc);
throw;

}
return port;

}
PVS-Studio diagnostic message: V668 There is no sense in testing the 'xcc' pointer against null, as the
memory was allocated using the 'new' operator. The exception will be generated in the case of memory
allocation error. xnet.cpp 2533
The analyzer warns us that the new operator cannot return nullptr - one must use a try-catch block or new
(std::nothrow). However, this example is a bit more complicated. The programmer uses macro FB_NEW
to allocate memory. This macro is declared in the file alloc.h:
#ifdef USE_SYSTEM_NEW
#define OOM_EXCEPTION std::bad_alloc

Analyzing Firebird 3.0 http://www.viva64.com/en/b/0396/

Стр. 9 из 15 22.05.2016 19:18

#else
#define OOM_EXCEPTION Firebird::BadAlloc
#endif
#define FB_NEW new(__FILE__, __LINE__)
inline void* operator new(size_t s ALLOC_PARAMS)
throw (OOM_EXCEPTION)
{
return MemoryPool::globalAlloc(s ALLOC_PASS_ARGS);

}
I can't say for sure if this particular example is incorrect, as it uses a non-standard allocator; but the
presence of throw (std::bad_alloc) in the operator declaration makes this check quite suspicious.

Unsafe use of realloc
int mputchar(struct mstring *s, int ch)
{
if (!s || !s->base) return ch;
if (s->ptr == s->end) {
int len = s->end - s->base;
if ((s->base = realloc(s->base, len+len+TAIL))) {

 s->ptr = s->base + len;
 s->end = s->base + len+len+TAIL; }

else {
 s->ptr = s->end = 0;

return ch; } }
*s->ptr++ = ch;
return ch;

}
PVS-Studio diagnostic message: V701 realloc() possible leak: when realloc() fails in allocating memory,
original pointer 's->base' is lost. Consider assigning realloc() to a temporary pointer. mstring.c 42
What is bad about expressions of the ptr = realloc(ptr, size) pattern is that the pointer to the memory block
will be lost when realloc returns nullptr. To avoid it, one needs to save the result returned by realloc in a
temporary variable and then assign this value to ptr after comparing it with nullptr.
temp_ptr = realloc(ptr, new_size);
if (temp_ptr == nullptr) {
//handle exception

} else {
 ptr = temp_ptr;
}

Unused enum values in switch
template <typename CharType>
LikeEvaluator<CharType>::LikeEvaluator(....)
{
....
PatternItem *item = patternItems.begin();
....
switch (item->type)
{
case piSkipFixed:
case piSkipMore:

 patternItems.grow(patternItems.getCount() + 1);
 item = patternItems.end() - 1;

// Note: fall into

Analyzing Firebird 3.0 http://www.viva64.com/en/b/0396/

Стр. 10 из 15 22.05.2016 19:18

case piNone:
 item->type = piEscapedString;
 item->str.data = const_cast<CharType*>

(pattern_str + pattern_pos - 2);
 item->str.length = 1;

break;
case piSearch:

 item->type = piEscapedString;
// Note: fall into

case piEscapedString:
 item->str.length++;

break;
}
....

}
PVS-Studio diagnostic message: V719 The switch statement does not cover all values of the
'PatternItemType' enum: piDirectMatch. evl_string.h 324
Not all enum values were used in the switch statement; the default block is absent, too. This example
seems to lack the code that handles the piDirectMatch element. Other similar issues:

V719 The switch statement does not cover all values of the 'PatternItemType' enum: piDirectMatch,
piSkipMore. evl_string.h 351
V719 The switch statement does not cover all values of the 'PatternItemType' enum: piDirectMatch.
evl_string.h 368
V719 The switch statement does not cover all values of the 'PatternItemType' enum: piDirectMatch.
evl_string.h 387

Buffer overflow
const int GDS_NAME_LEN = 32;
....
bool get_function(BurpGlobals* tdgbl)
{
....
struct isc_844_struct {
....
short isc_870; /* gds__null_flag */
....
char isc_874 [125]; /* RDB$PACKAGE_NAME */
....

} isc_844;

 att_type attribute;
 TEXT temp[GDS_NAME_LEN * 2];
....

 SSHORT prefixLen = 0;
if (!/*X.RDB$PACKAGE_NAME.NULL*/

 isc_844.isc_870)
{

 prefixLen = static_cast<SSHORT>(strlen(/*X.RDB$PACKAGE_NAME*/
 isc_844.isc_874));
 memcpy(temp, /*X.RDB$PACKAGE_NAME*/
 isc_844.isc_874, prefixLen);
 temp[prefixLen++] = '.';
}
....

}
PVS-Studio diagnostic message: V557 Array overrun is possible. The value of 'prefixLen ++' index could

Analyzing Firebird 3.0 http://www.viva64.com/en/b/0396/

Стр. 11 из 15 22.05.2016 19:18

reach 124. restore.cpp 10040
The size of the buffer isc_844.isc_874 is 125; therefore, the largest value possible of
strlen(isc_844.isc_874) is 124. The size of temp is 64, which is less than that value. Writing at this index
may cause a buffer overflow. A safer way is to allocate a larger storage for the temp variable.

Shifting negative numbers
static ISC_STATUS stuff_literal(gen_t* gen, SLONG literal)
{
....
if (literal >= -32768 && literal <= 32767)
return stuff_args(gen, 3, isc_sdl_short_integer, literal,

 literal >> 8);
....

}
PVS-Studio diagnostic message: V610 Unspecified behavior. Check the shift operator '>>'. The left
operand is negative ('literal' = [-32768..32767]). array.cpp 848
The code contains a right-shift operation on a negative number. As the C++ standard states, such an
operation leads to undefined behavior, i.e. it may produce different results on different compilers and
platforms. The code should be rewritten as follows:
if (literal >= -32768 && literal <= 32767)
return stuff_args(gen, 3, isc_sdl_short_integer, literal,

(ULONG)literal >> 8);
Another fragment triggering this warning:
V610 Unspecified behavior. Check the shift operator '>>'. The left operand is negative ('i64value' =
[-2147483648..2147483647]). exprnodes.cpp 6382

Variable redefinition
THREAD_ENTRY_DECLARE Service::run(THREAD_ENTRY_PARAM arg)
{
int exit_code = -1;
try
{
Service* svc = (Service*)arg;
RefPtr<SvcMutex> ref(svc->svc_existence);
int exit_code = svc->svc_service_run->serv_thd(svc);

 svc->started();
 svc->svc_sem_full.release();
 svc->finish(SVC_finished);
}
catch (const Exception& ex)
{
// Not much we can do here

 iscLogException("Exception in Service::run():", ex);
}
return (THREAD_ENTRY_RETURN)(IPTR) exit_code;

}

Analyzing Firebird 3.0 http://www.viva64.com/en/b/0396/

Стр. 12 из 15 22.05.2016 19:18

PVS-Studio diagnostic message: V561 It's probably better to assign value to 'exit_code' variable than to
declare it anew. Previous declaration: svc.cpp, line 1893. svc.cpp 1898
In this example, the exit_code variable is redefined instead of being assigned a value. Variable redefinition
hides the previously declared variable from the scope and makes the function always return an incorrect
value, which is -1.
Fixed code:
THREAD_ENTRY_DECLARE Service::run(THREAD_ENTRY_PARAM arg)
{
int exit_code = -1;
try
{
Service* svc = (Service*)arg;
RefPtr<SvcMutex> ref(svc->svc_existence);

 exit_code = svc->svc_service_run->serv_thd(svc);
 svc->started();
 svc->svc_sem_full.release();
 svc->finish(SVC_finished);
}
catch (const Exception& ex)
{
// Not much we can do here

 iscLogException("Exception in Service::run():", ex);
}
return (THREAD_ENTRY_RETURN)(IPTR) exit_code;

}

Conclusion
As the new analysis shows, the project developers have fixed most of the issues found during the previous
analysis, so those bugs are no longer there, which is a good sign that the compiler did a good job.
However, using the analyzer regularly could help achieve even better results because that way it allows
catching bugs at earlier stages. Incremental analysis and compatibility with any build system allow
integrating the analyzer easily into your project. Using static analysis helps save plenty of time and catch
errors that are difficult to detect by means of debugging or dynamic analysis.

6 0 16 1 51
Next Previous
Our Customers

Analyzing Firebird 3.0 http://www.viva64.com/en/b/0396/

Стр. 13 из 15 22.05.2016 19:18

Analyzing Firebird 3.0 http://www.viva64.com/en/b/0396/

Стр. 14 из 15 22.05.2016 19:18

‹ ›

 We develop the static code analyzer PVS-Studio for C, C++ and C# code.
This tool has managed to catch bugs in Chromium, Qt, Clang, etc. Check your code too.
support@viva64.com Contact Us

PVS-Studio
Download
Product page
Documentation
Messages
Troubleshooting

Buy
Buy
PVS-Studio
Site License
Licensing
FAQ

Our Advances
Checked
projects
Detected
errors
Customers

Interesting
Blog
Articles
C++ quiz
Merchandise
64-bit lessons
Knowledge
base
Terminology

Company
About Us
Jobs
News
Team
Address
Contact
Us
Sitemap

© 2016, OOO "Program Verification Systems"

Analyzing Firebird 3.0 http://www.viva64.com/en/b/0396/

Стр. 15 из 15 22.05.2016 19:18

